Appendix F

Shoreline interactions and response

Appendix F Contents

F1	Introduction	
F2	Assessment of defences	1
F2.1		
F2.2		
F2.3	3 Step 2: Validation by the defence asset managers	6
F2.4	Coastal defence management schemes	6
F2.5		
F2.6	6 Defence condition assessment	28
F2.7	7 Defence residual life assessment	29
F2.8	B Estimated defence failure assessment	30
F2.9	Residual life under continued maintenance	31
F3	Baseline scenarios	34
F3.1	Introduction	34
F3.2	2 SMP-wide overview of north Norfolk coastal processes	40
F3.3	B Description of each frontage and interactions	43
F3.4		
F3.5	5 References	51
F3.6	S Frontage tables	51
F4	Flood risk	159
F4.1	Introduction	159
F4.2	2 Approach	160
F4.3	Results	161
F4.4	Conclusions	165
F4.5	5 Detailed results	166
F5	Erosion risk	178
F5.1	Introduction	178
F5.2	2 Approach	178
F5.3	Super-frontage 1 (frontages A and B)	179
F5.4		
F5.5		
F5.6		

List of figures

F2.1	Defence condition assessment	27
F2.2	Defence residual life assessment	28
F2.3	Estimated defence failure assessment	29
F2.4	Condition grade against time for embankments-fluvial	
	environment-turf-wide	30

F3.1	Frontages used for developing baseline scenarios	35
F3.2	Combined SAR/bathymetry plot of the north Norfolk	
	coastline	41
F3.3	Barrier system	42
F3.4	Open coast system	43
F4.6.1	Frontage A – Old Hunstanton	53
F4.6.2	Frontage B – Holme-next-the-Sea and Thornham	64
F4.6.3	Frontage C – Titchwell and Brancaster	76
F4.6.4	Frontage D – Scolt Head Island	88
F4.6.5	Frontage E – Holkham bay	100
F4.6.6	Frontage F – Stiffkey and Warham marshes	111
F4.6.7	Frontage G – Blakeney spit	122
F4.6.8	Frontage H – Cley and Salthouse	135
F4.1	Predicted change of flood extent in epochs 1, 2 and 3	166
F5.1	Frontage A assets at risk from erosion	169
F5.2	Frontage B assets at risk from erosion	170
F5.3	Frontage C assets at risk from erosion	173
F5.4	Frontage E assets at risk from erosion	174
F5.5	Frontage H assets at risk from erosion	176

List of tables

Estimate of deterioration for assessment of residual life	0
3	2
•	-
	2
Estimate of deterioration for assessment of residual life	
adopted for grassed earth embankments (sea banks)	3
Assumptions about SMP defence types	3
· · ·	
baseline assessment	5
Assumptions for the with present management	
· · · ·	9
	31
	32
	32
	38
o , o	39
Risk matrix	147
1:1000 vear water levels plus sea level rise	148
	152
• •	154
, , , , , , , , , , , , , , , , , , , ,	157
0	160
	163
	 (from SMP guidance) NADNAC deterioration profile for a wide earth embankment with turf revetment Estimate of deterioration for assessment of residual life adopted for grassed earth embankments (sea banks) Assumptions about SMP defence types Categories and assumptions for the with present management baseline assessment Assumptions for the with present management baseline assessment Time for embankment to reach very poor condition (CG5) Time for SoP to reduce from 1:10 a year to 1:1 a year Time for SoP to reduce from 1:25 a year to 1:1 a year Environment Agency monitoring rates 1996 -to 2006 Sea level rise guidance (Defra 2006)

F1 Introduction

This appendix reports on a number of tasks from the early stages of the SMP: assessment of coastal defences, development of baseline scenarios and the assessments of flood risk and erosion risk.

F2 Assessment of defences

F2.1 Introduction

The aim of this task is to review coastal behaviour and dynamics. Understanding these processes underpins the sound development of the SMP. This will include assessment of natural features as well as considering the existing defences. The results from this task will be used to develop the baseline scenarios, identify risks and test the response and implications of different management policy scenarios over three separate timescales (present day to 2025, 2026 to 2055 and 2056 to 2105).

This task is divided into two explicit tasks. This section deals with the second part of this task, which consists of assessing, in broad terms, every coastal defence in the SMP study area. It has been split down further into two stages:

- theoretical approach based on condition, according to the SMP guidance
- validation by asset managers.

This appendix has been produced after validation by the asset managers.

Section F2.9 reports on additional work, undertaken after the public consultation, to estimate the residual life of the flood defences if current levels of maintenance were continued.

F2.2 Step 1: Residual life based on condition grade

F2.2.1 Method

SMP guidance

The SMP guidance provides residual life numbers based on the existing defence condition grades for a number of defence types (table F2.1). This information has been derived from previous NADNAC (National Appraisal of Defence Needs and Costs) deterioration profiles.

Defence description			Estimate of	of residual l	ife (years)	
Delence description	•	Grade 1	Grade 2	Grade 3	Grade 4	Grade 5
Sea wall	Fastest	25	15	10	5	0
(concrete/masonry)	Slowest	35	25	15	7	0
Revetment	Fastest	25	15	10	5	7
(concrete/rock)	Slowest	35	25	15	7	0
Timber groynes/	Fastest	15	10	8	2	0
timber structures	Slowest	25	20	12	7	0
Gabion	Fastest	10	6	4	1	0
Gabion	Slowest	25	10	7	3	0

Table F2.1: Estimate of deterioration for assessment of residual life (from SMP guidance)

Additional method for grassed embankments

The SMP guidance does not contain residual life estimates for grassed earth embankments, which make up a high proportion of the flood defences along the north Norfolk coast. We have therefore developed a residual life profile for this asset type. In discussion with the Environment Agency and Defra, we have decided to use the latest knowledge about asset deterioration. This was improved in 2007 from the NADNAC information for using in the Environment Agency's System Asset Management Plans (SAMPs), adapting this so it is in the same format as the SMP guidance.

Defence class number 45 (type 2) from NADNAC, described as a wide earth embankment with turf revetment, most closely matches the grassed earth embankments characteristic of the Wash area. The SAMP (2007) deterioration profile for this defence type is shown in table F2.2. This information differs from the SMP guidance as the SAMP numbers indicate the number of years to reach a condition from new. The SMP numbers indicate the number of years from a condition to failure.

	Number	Type		Tim	e (years) to	reach cond	dition from	new
Number		Туре		Grade 1	Grade 2	Grade 3	Grade 5	
45	Type 2, W, FP,	Best estimate	0	13	20	28	33	
	45	Turf	Fastest	0	10	15	22	25
		TUIT	Slowest	0	15	25	35	40

 Table F2.2: NADNAC deterioration profile for a wide earth embankment

 with turf revetment

After consulting the Environment Agency and Defra, it was decided to convert the deterioration profiles from SAMP (2007) directly to residual life profiles. Grade 5 is assumed to signify failure. The difference in years between a certain grade and grade 5 is assumed to be the residual life of a defence of that grade. This approach is comparable to the one used to establish the residual life profiles in the SMP guidance. Technically, this assumes that the assigned condition is always at the 'top' of the condition, but this is acceptable given the uncertainties in the scientific background of the deterioration rates. Table F2.3 defines the final residual life assessments

used for the grassed earth embankments (sea banks) of north Norfolk. This approach is consistent with that taken for the Wash SMP2.

 Table F2.3:
 Estimate of deterioration for assessment of residual life

 adopted for grassed earth embankments (sea banks)

Defence de	ecription	I	Estimate of	residual l	ife (years)	
Defence de	scription	Grade 1	Grade 2	Grade 3	Grade 4	Grade 5
Sea bank	Fastest	25	15	10	3	0
Sea Dalik	Slowest	40	25	15	5	0

Also, the guidance does not contain residual life numbers for 'natural defences' such as sand dunes. These occur widely along the north Norfolk coastline. In some cases they are natural, undisturbed features. In others, they have a variety of man-made toe protection elements, such as gabions and revetments. However, as human intervention on these defences is minimal, and the weakest element of the defence is the sand dune itself, the dunes have been classed as natural features for this assessment so there has been no estimate made of residual life and defence failure.

Further assumptions

A number of other assumptions were made about the defence type. In some cases, the descriptions of the individual defences are not clear so we have had to make certain assumptions to assign a defence to a specific SMP category. These assumptions are listed in table F2.4.

Specific NFCDD description	Assumed SMP category
Any sand dune with toe protection	Sand dune
Concrete revetment on vegetated earth flood bank	Sea bank
Timber sea wall protecting earth bank	Sea bank
Gabion groyne constructed from 1m x 1m gabion baskets	Gabion

 Table F2.4: Assumptions about SMP defence types

F2.2.2 Data availability

Data about specific elements of each defence were provided by the defences' asset managers from the National Flood and Coastal Defence Database (NFCDD). The download date for these data was 17 December 2007. NFCDD includes a description of each defence and an 'overall condition grade' that was assigned to the defence during the last inspection. In some cases, an overall condition is not available so we have used the manual override condition from NFCDD instead. This override grade was assigned by the asset manager to certain defences based on the condition of the asset elements and their weightings. In cases where both the overall condition grade and the manual override condition were available, the manual override condition was used as this provides the best overview of the condition of a particular defence.

It is also worth mentioning that the received NFCDD data contain an estimate of residual life but, as specified in the SMP guidance, these have not been used for the defence assessment. Instead, the residual life for each defence has been derived using the method discussed in section F2.1.

The NFCDD database also contained a number of defences that were either outside the boundaries of the study area, were secondary defences or had a condition grade of 5 and so have already failed. These defences were subsequently removed from the final output.

The NFCDD database does not always provide accurate, up-to-date information for defences that are owned privately or by local authorities. As a result the following sources were also consulted to gain a complete record of coastal defences in this SMP area:

- North Norfolk District Council quay wall in Wells-next-the-Sea
- "RSPB Titchwell Reserve EIA: Assessment of Condition and Standard of Defence" (Royal Haskoning 2005) and consultation with RSPB staff defences protecting the Titchwell RSPB nature reserve
- Royal West Norfolk golf club staff defences protecting the golf clubhouse and golf links.

F2.2.3 Results

Referencing the defences

A unique 'SMP2 reference' has been assigned to all relevant defences within the SMP boundary. For this assessment only, the frontline defences have been identified and assessed so the format of the unique 'SMP2 reference' reflects this (DEF_1_defence number). Defences were numbered in numerical order starting at the western boundary of the study area (immediately to the north east of Old Hunstanton) to the eastern boundary (Kelling Hard).

Assessment for 'no active Intervention'

The results of this task are shown in table F2.6. This table provides a summary of the defences within the study area and includes an individual defence's location, description and who maintains it. This information comes directly from NFCDD. The table also summarises the assumptions used for the condition assessment, the defence category (see section F2.2.1) and the fastest and slowest estimates of residual life under the 'no active intervention' (NAI) policy. The defence category column relates to the 'with present management' scenario (see section F2.2.3).

The residual life for each defence has also been used to define the epoch during which the defence is likely to fail. The three epochs are defined under the SMP guidance:

F4

- epoch 1 present day to 2025
- epoch 2 2026 to 2055
- epoch 3 2056 to 2105.

This is not necessarily an essential part of this task, but it will provide vital information for completing the baseline scenarios task.

Table F2.6 also identifies the areas where data needed to complete the assessment have been assumed (red text). There are many defences that have the potential to fail during epoch 1, but may not fail until epoch 2. This provides uncertainty to the assessment of defence failure and will need to be taken into account in subsequent tasks.

The condition grades for each defence are presented diagrammatically in section F2.6 and the estimate of the residual life for each defence is presented in section F2.7. Section F2.8 illustrates an expected failure plan for the three epochs.

Assessment for with present management

In order to prepare the defence assessment output for the 'with present management (WPM)' scenario to be analysed, it was necessary to define the functions of the defence 'practice' rather than simply the specifics of the structure itself. As a result, an extra column has been inserted into the output table (table F2.6) to this section (labelled 'defence category') to determine how the present management and practices in the study area affect shoreline processes and behaviour. Defences have been categorised using the guidance from table D2 in appendix D of the SMP guidance. A summary of the categories and the assumptions for each are included in table F2.5.

Defence type	Example	Brief assumptions
category	structure	
Linear stoppers	Sea wall, grassed embankments	Minimise breach, structural integrity remains and wall is rebuilt at a similar standard of effectiveness
Linear reducers	Maintained shingle barrier	Continues to reduce erosion, although level of effectiveness may change so rate of erosion may change
Cross-shore interrupters	Groynes, breakwaters	Continues to interrupt drift but not necessarily the same amount
Changers	Recharge/recycling	Continues to recharge with same amount, sediment type and timing

Table F2.5: Categories and assumptions for the with presentmanagement baseline assessment

Note that we have assumed that maintained grassed embankments will act as linear stoppers, just like sea walls.

F2.2.4 Discussion

Just over 50 per cent of the north Norfolk defences are classed as sea banks and just under 15 per cent are classed as natural defences (shingle ridge/ sand dune). Due to their classification as 'natural defences', they do not have a calculated residual life. However, many of the sand dunes have some degree of hard/soft engineered toe protection structures but they have been classed as sand dunes in the assessment as the sand dune is the weakest element.

The north Norfolk coastline provides a varied selection of condition grades for the study area. Condition grades range from 1 to 5, but for this task those with a condition grade of 5 are assumed to have failed so have been removed from the table in section F2.6. Most of the defences have a condition grade of 2 or 3 (34 per cent and 43 per cent respectively). Of the remaining defences, 20 per cent have a condition grade of 4 and only two per cent have a condition, and only two per cent have a condition.

Sections F2.7 and F2.8, the assessment of residual life for a scenario of no active intervention and the resulting epoch of defence failure, indicate that the strongest sea defences along the north Norfolk coast are those that protect the villages of Burnham Deepdale, Burnham Norton and Burnham Overy Staithe. The weakest location along the coast is highlighted with the gabion defences at Old Hunstanton with most residual life estimates ranging from four to seven years. A few have shorter life estimates of one to three years. There are also a number of weak locations at Titchwell, Brancaster Staithe and Morston.

In summary, most of the sea defences along the north Norfolk coast are expected to fail during epoch 1 (60 per cent) under a policy of NAI. There is also a large proportion of defences (24 per cent) that have the potential to fail during epoch 1 or may not fail until epoch 2.

F2.3 Step 2: Validation by the defence asset managers

This appendix has been completed using the information provided by the asset managers and following consultation with local authorities and a number of private organisations.

F2.4 Coastal defence management schemes

As well as providing a basic inventory of all frontline coastal defences in this SMP area, and undertaking an assessment of each defence's condition grade and predicted failure, it is also necessary to obtain background knowledge of the specific management strategies that have been carried out. This section provides a brief overview of the various known management

strategies. This will also be useful when carrying out the assessment of baseline scenarios task.

F2.4.1 River Glaven realignment

The natural rollback of Blakeney Spit has been seen to block the tidal River Glaven channel. As a result, the natural channel was cut back in 1924 by about 75 metres due to the threat of a permanent blockage occurring. In addition, management of the tidal River Glaven involved dredging the shingle material from the channel and replacing it on the back-face of the shingle ridge.

Despite these management attempts, the natural rollback caused the channel to block in 1996 and there were other similar blockages in 1953, 1978 and 1991. It was therefore decided that this management strategy was unsustainable.

If a blockage does occur in the tidal River Glaven channel, drainage from both the Cley and Salthouse marshes (a SPA and cSAC), and from the fluvial River Glaven, is impeded. This causes damage to the marsh and river flooding upstream of the River Glaven tidal sluice (in Clev-next-the-Sea and Wiveton). It is known that occasional saline inundation of freshwater marshes, such as the Cley and Salthouse marshes, is environmentally acceptable provided the saline flood waters are quickly evacuated from the marshes within five to seven days. The Cley-Salthouse Flood Management Scheme was put in place to allow effective discharge of saline flood waters into the upper Glaven estuary (downstream of the tidal outfall sluice). However, in 1996 the blockage of the tidal River Glaven in the upper Glaven estuary compromised the success of this scheme and meant that saline flood waters did not effectively drain from the marsh for between three and four weeks. This caused significant environmental damage to freshwater habitats and saline lagoon features.

Because of these events, and the acknowledgement that continued dredging of the channel was unsustainable, a number of options were considered and a preferred option was chosen. The details of all options, and of the preferred options, can be found in the Blakeney Project Appraisal Report (Halcrow 2002). The preferred option involved building a new tidal channel in Blakeney Freshes about 200 metres inland of its old position. The flood defence embankment, located on the landward edge of the old channel, was also realigned to the landward edge of the new channel. This option is the minimum needed to ensure compliance with the Conservation Regulations (1994). It will provide continued impeded drainage for around 200 years, so is not considered to be a long term option. The preferred option does not prejudice the success of a longer-term plan for managed realignment of the Blakeney Freshes site.

F2.4.2 Titchwell RSPB reserve

There is currently a managed realignment project underway in the RSPB reserve at Titchwell. This involves building a new defence line (the Parrinder Wall, to be completed in autumn 2011), strengthening the west wall to increase flood protection and allow continued access to the bird hides and beach (to be completed in autumn 2010) and finally breaching the existing northern bank in autumn 2011. The RSPB has designed the planned realignment for a 50-year period, after which they expect further inland realignment will be needed in response to coastal processes.

F2.5 References

Halcrow, 2005, Salthouse and Cley Marshes – Drainage Improvement Scheme Project Appraisal Report

Royal Haskoning, 2005, RSPB Titchwell Reserve EIA: Assessment of Condition and Standard of Defence

SMP2 reference	NFCDD reference	Grid reference	Location	Defence type	Description	Length (m)	Maintainer	Degree of exposure	Design standard	NFCDD residual life	Overall condition	Manual override condition	Category for condition assessment	Condition used for assessment	Estimate of residual life (yrs) under NAI policy - fastest	Estimated year of failure - fastest	Estimate of residual life (yrs) under NAI policy - slowest	Estimated year of failure - slowest	Defence category	Defence failure (epoch)
DEF_1_0 01	054CANNNS1001C01	TF6791542445	From Old Hunstanton lifeboat station TF6817542647 to TF6833542802.	Sea defence (man- made)	Stepped gabion basket toe wall backed by sand dune.	532.9	Environment Agency	high	10	6-10	3		Sand dune	3	Natural defence	Natural defence	Natural defence	Natural defence	Linear reducer/ changer	Natural defence
DEF_1_002	054CANNNS1001C02	TF6851242903	About 200 metres from lifeboat house in Old Hunstanton. In front of Hunstanton golf course.	Sea defence (man- made)	Gabion basket toe wall with stub groynes/ dunes.	218.4	Environment Agency	high	10	1-5	4		Sand dune	4	Natural defence	Natural defence	Natural defence	Natural defence	Linear reducer/ changer	Natural defence
DEF_1_003	054CANNNS1001C03	TF6925143717	In front of Hunstanton golf course.	Sea defence (man- made)	Natural sand dune with gabion basket protection at toe of dune. Gabion groynes extending from gabion to toe wall.	1100.3	Environment Agency	high	10	6-10	4		Sand dune	4	Natural defence	Natural defence	Natural defence	Natural defence	Linear reducer/ changer	Natural defence
DEF_1_00 4	054CANNNS1001C04	TF6952644066	North east end of golf course near Holme village from TF6919643703 to TF6950044000.	Sea defence (natural)	Vegetated sand dunes.	444.7	Environment Agency	high	10		3		Sand dune	3	Natural defence	Natural defence	Natural defence	Natural defence	Linear reducer/ changer	Natural defence
DEF_1_005	054CANNNS1001C08	TF6830742769	Old Hunstanton	Sea defence (man- made)	Eight metre long gabion groyne built with 1m x 1m gabion baskets.	8.2	Environment Agency	high	10	6-10	7	1	Gabion	1	10	2017	25	2032	Cross-shore interrupter	1/2
DEF_1_006	054CANNNS1001C09	TF6832442781	Old Hunstanton	Sea defence (man- made)	Eight metre long gabion groyne built with 1m x 1m gabion baskets.	8.1	Environment Agency	high	10	6-10	2		Gabion	2	Q	2013	10	2017	Cross-shore interrupter	-

Table F2.6: Assumptions for the with present management baseline assessment

SMP2 reference	NFCDD reference	Grid reference	Location	Defence type	Description	Length (m)	Maintainer	Degree of exposure	Design standard	NFCDD residual life	Overall condition	Manual override condition	Category for condition assessment	Condition used for assessment	Estimate of residual life (yrs) under NAI policy - fastest	Estimated year of failure - fastest	Estimate of residual life (yrs) under NAI policy - slowest	Estimated year of failure - slowest	Defence category	Defence failure (epoch)
DEF_1_007	054CANNNS1001C10	TF6834142794	Old Hunstanton	Sea defence (man- made)	Eight metre long gabion groyne built with 1m x 1m gabion baskets.	8.1	Environment Agency	high	10	6-10	2	3	Gabion	З	4	2011	7	2014	Cross-shore interrupter	-
DEF_1_008	054CANNNS1001C11	TF6835742806	Old Hunstanton	Sea defence (man- made)	Eight metre long gabion groyne built with 1m x 1m gabion baskets.	8.1	Environment Agency	high	10	6-10	4	3	Gabion	З	4	2011	7	2014	Cross-shore interrupter	1
DEF_1_009	054CANNNS1001C12	TF6837342819	Old Hunstanton	Sea defence (man- made)	Eight metre long gabion groyne built with 1m x 1m gabion baskets.	8.0	Environment Agency	high	10	6-10	4	3	Gabion	ю	4	2011	7	2014	Cross-shore interrupter	-
DEF_1_010	054CANNNS1001C13	TF6839042831	Old Hunstanton	Sea defence (man- made)	Eight metre long gabion groyne built with 1m x 1m gabion baskets.	8.0	Environment Agency	high	10	6-10	4		Gabion	4	٢	2008	ε	2010	Cross-shore interrupter	-
DEF_1_011	054CANNNS1001C14	TF6840642843	Old Hunstanton	Sea defence (man- made)	Eight metre long gabion groyne built with 1m x 1m gabion baskets.	8.0	Environment Agency	high	10	6-10	4		Gabion	4	1	2008	ε	2010	Cross-shore interrupter	-
DEF_1_012	054CANNNS1001C15	TF6842342856	Old Hunstanton	Sea defence (man- made)	Eight metre long gabion groyne built with 1m x 1m gabion baskets.	8.0	Environment Agency	high	10	6-10	4		Gabion	4	1	2008	ε	2010	Cross-shore interrupter	1
DEF_1_013	054CANNNS1001C16	TF6843942867	Old Hunstanton	Sea defence (man- made)	Eight metre long gabion groyne built with 1m x 1m gabion baskets.	8.4	Environment Agency	high	10	6-10	4		Gabion	4	~	2008	e	2010	Cross-shore interrupter	-

SMP2 reference	NFCDD reference	Grid reference	Location	Defence type	Description	Length (m)	Maintainer	Degree of exposure	Design standard	NFCDD residual life	Overall condition	Manual override condition	Category for condition assessment	Condition used for assessment	Estimate of residual life (yrs) under NAI policy - fastest	Estimated year of failure - fastest	Estimate of residual life (yrs) under NAI policy - slowest	Estimated year of failure - slowest	Defence category	Defence failure (epoch)
DEF_1_014	054CANNNS1001C17	TF6845042887	Old Hunstanton	Sea defence (man- made)	Eight metre long gabion groyne built with 1m x 1m gabion baskets.	8.5	Environment Agency	high	10	6-10	4	3	Gabion	3	4	2011	7	2014	Cross-shore interrupter	1
DEF_1_015	054CANNNS1001C18	TF6847342894	Old Hunstanton	Sea defence (man- made)	Eight metre long gabion groyne built with 1m x 1m gabion baskets.	7.9	Environment Agency	high	10	6-10	4		Gabion	4	1	2008	3	2010	Cross-shore interrupter	1
DEF_1_016	054CANNNS1001C19	TF6847042932	Old Hunstanton, seaward of Hunstanton golf club.	Sea defence (man- made)	32 metre long gabion groyne built with 1m x 1m gabion baskets.	32.4	Environment Agency	high	10	6-10	N		Gabion	2	9	2013	10	2017	Cross-shore interrupter	1
DEF_1_017	054CANNNS1001C20	TF6853142943	Old Hunstanton seaward of Hunstanton golf club.	Sea defence (man- made)	32 metre long gabion groyne built with 1m x 1m gabion baskets.	32.1	Environment Agency	high	10	6-10	7		Gabion	2	Q	2013	10	2017	Cross-shore interrupter	1
DEF_1_018	054CANNNS1001C21	TF6855043003	Old Hunstanton seaward of Hunstanton golf club.	Sea defence (man- made)	32 metre long gabion groyne built with 1m x 1m gabion baskets.	32.3	Environment Agency	high	10	6-10	7		Gabion	2	Q	2013	10	2017	Cross-shore interrupter	1
DEF_1_019	054CANNNS1001C22	TF6861543017	Old Hunstanton in front of Hunstanton golf club.	Sea defence (man- made)	32 metre long gabion groyne built with 1m x 1m gabion baskets.	32.3	Environment Agency	high	10	6-10	7		Gabion	2	Q	2013	10	2017	Cross-shore interrupter	1
DEF_1_020	054CANNNS1001C23	TF6865543052	Old Hunstanton seaward of Hunstanton golf club	Sea defence (man- made)	32 metre long gabion groyne built with 1m x 1m gabion baskets.	33.3	Environment Agency	high	10	6-10	2		Gabion	2	Q	2013	10	2017	Cross-shore interrupter	-

SMP2 reference	NFCDD reference	Grid reference	Location	Defence type	Description	Length (m)	Maintainer	Degree of exposure	Design standard	NFCDD residual life	Overall condition	Manual override condition	Category for condition assessment	Condition used for assessment	Estimate of residual life (yrs) under NAI policy - fastest	Estimated year of failure - fastest	Estimate of residual life (yrs) under NAI policy - slowest	Estimated year of failure - slowest	Defence category	Defence failure (epoch)
DEF_1_021	054CANNNS1001C24	TF6869643087	Old Hunstanton seaward of golf club.	Sea defence (man- made)	32 metre long gabion groyne built with 1m x 1m gabion baskets.	33.7	Environment Agency	high	10	6-10	2		Gabion	2	9	2013	10	2017	Cross-shore interrupter	-
DEF_1_022	054CANNNS1001C25	TF6873043118	Old Hunstanton seaward of golf club.	Sea defence (man- made)	32 metre long gabion groyne built with 1m x 1m gabion baskets.	33.5	Environment Agency	high	10	6-10	2		Gabion	2	Q	2013	10	2017	Cross-shore interrupter	-
DEF_1_023	054CANNNS1001C26	TF6875443171	Old Hunstanton seaward of golf club.	Sea defence (man- made)	32 metre long gabion groyne built with 1m x 1m gabion baskets.	34.3	Environment Agency	high	10	6-10	N		Gabion	2	Q	2013	10	2017	Cross-shore interrupter	2
DEF_1_024	054CANNNS1001C27	TF6878843206	Old Hunstanton seaward of Hunstanton golf club.	Sea defence (man- made)	32 metre long gabion groyne built with 1m x 1m gabion baskets.	33.9	Environment Agency	high	10	6-10	7		Gabion	2	Q	2013	10	2017	Cross-shore interrupter	5
DEF_1_025	054CANNNS1001C28	TF6882243242	Old Hunstanton seaward of golf club.	Sea defence (man- made)	32 metre long gabion groyne built with 1m x 1m gabion baskets.	33.1	Environment Agency	high	10	6-10	ĸ		Gabion	ю	4	2011	7	2014	Cross-shore interrupter	-
DEF_1_026	054CANNNS1001C29	TF6885843279	Old Hunstanton seaward of golf club.	Sea defence (man- made)	32 metre long gabion groyne built with 1m x 1m gabion baskets.	32.9	Environment Agency	high	10	6-10	ĸ		Gabion	ю	4	2011	7	2014	Cross-shore interrupter	-
DEF_1_027	054CANNNS1001C30	TF6889243315	Old Hunstanton seaward of golf club.	Sea defence (man- made)	32 metre long gabion groyne built with 1m x 1m gabion baskets.	32.5	Environment Agency	high	10	6-10	4		Gabion	4	-	2008	e	2010	Cross-shore interrupter	~

SMP2 reference	NFCDD reference	Grid reference	Location	Defence type	Description	Length (m)	Maintainer	Degree of exposure	Design standard	NFCDD residual life	Overall condition	Manual override condition	Category for condition assessment	Condition used for assessment	Estimate of residual life (yrs) under NAI policy - fastest	Estimated year of failure - fastest	Estimate of residual life (yrs) under NAI policy - slowest	Estimated year of failure - slowest	Defence category	Defence failure (epoch)
DEF_1_028	054CANNNS1001C31	TF6892743351	Old Hunstanton seaward of golf club.	Sea defence (man- made)	32 metre long gabion groyne built with 1m x 1m gabion baskets.	32.2	Environment Agency	high	10	6-10	З		Gabion	3	4	2011	2	2014	Cross-shore interrupter	1
DEF_1_029	054CANNNS1001C32	TF6896243388	Old Hunstanton seaward of golf club.	Sea defence (man- made)	32 metre long gabion groyne built with 1m x 1m gabion baskets.	31.7	Environment Agency	high	10	1-5	4		Gabion	4	~	2008	m	2010	Cross-shore interrupter	-
DEF_1_030	054CANNNS1001C33	TF6899443421	Old Hunstanton seaward of golf club.	Sea defence (man- made)	32 metre long gabion groyne built with 1m x 1m gabion baskets.	31.5	Environment Agency	high	10	1-5	4		Gabion	4	-	2008	m	2010	Cross-shore interrupter	1
DEF_1_033	054CANNNS1001C36	TF6906543523	Old Hunstanton seaward of golf club.	Sea defence (man- made)	24 metre long gabion groyne built with 1m x 1m gabion baskets.	24.2	Environment Agency	high	10	6-10	4		Gabion	4	٢	2008	m	2010	Cross-shore interrupter	1
DEF_1_034	054CANNNS1001C37	TF6908143542	Old Hunstanton seaward of golf club.	Sea defence (man- made)	24 metre long gabion groyne built with 1m x 1m gabion baskets.	24.7	Environment Agency	high	10	6-10	4		Gabion	4	7	2008	m	2010	Cross-shore interrupter	1
DEF_1_035	054CANNNS1001C38	TF6909843561	Old Hunstanton seaward of golf club.	Sea defence (man- made)	24 metre long gabion groyne built with 1m x 1m gabion baskets.	25.7	Environment Agency	high	10	6-10	m		Gabion	ю	4	2011	2	2014	Cross-shore interrupter	1
DEF_1_036	054CANNNS1001C39	TF6911243580	Old Hunstanton seaward of golf club.	Sea defence (man- made)	24 metre long gabion groyne built with 1m x 1m gabion baskets.	24.5	Environment Agency	high	10	6-10	e		Gabion	З	4	2011	2	2014	Cross-shore interrupter	-

SMP2 reference	NFCDD reference	Grid reference	Location	Defence type	Description	Length (m)	Maintainer	Degree of exposure	Design standard	NFCDD residual life	Overall condition	Manual override condition	Category for condition assessment	Condition used for assessment	Estimate of residual life (yrs) under NAI policy - fastest	Estimated year of failure - fastest	Estimate of residual life (yrs) under NAI policy - slowest	Estimated year of failure - slowest	Defence category	Defence failure (epoch)
DEF_1_037	054CANNNS1001C40	TF6912743599	Old Hunstanton seaward of golf club.	Sea defence (man- made)	24 metre long gabion groyne built with 1m x 1m gabion baskets.	24.0	Environment Agency	high	10	6-10	с		Gabion	с	4	2011	7	2014	Cross-shore interrupter	Ł
DEF_1_038	054CANNNS1001C41	TF6914443618	Old Hunstanton seaward of golf club.	Sea defence (man- made)	24 metre long gabion groyne built with 1m x 1m gabion baskets.	24.2	Environment Agency	high	10	6-10	4		Gabion	4	-	2008	ю	2010	Cross-shore interrupter	Ļ
DEF_1_039	054CANNNS1001C42	TF6915843636	Old Hunstanton seaward of golf club.	Sea defence (man- made)	24 metre long gabion groyne built with 1m x 1m gabion baskets.	23.4	Environment Agency	high	10	6-10	4		Gabion	4	۲	2008	ю	2010	Cross-shore interrupter	1
DEF_1_040	054CANNNS1001C43	TF6918043656	Old Hunstanton seaward of golf club.	Sea defence (man- made)	Stone-filled gabion groyne 24 metres long.	20.5	Environment Agency	-	10	6-10	4		Gabion	4	۲	2008	ю	2010	Cross-shore interrupter	L
DEF_1_041	054CANNNS1001C44	TF6919143677	Old Hunstanton seaward of golf course.	Sea defence (man- made)	Stone-filled gabion groyne 24 metres long.	19.2	Environment Agency	-	10	6-10	4		Gabion	4	~	2008	ю	2010	Cross-shore interrupter	Ł
DEF_1_0 42	054CANNNS0901C01	TF6985044330	Near Holme village.	Sea defence (natural)	Vegetated sand dunes.	419.2	Environment Agency	high	10	6-10	m	ю	Sand dune	ю	Natural defence	Natural defence	Natural defence	Natural defence	Linear reducer/ changer	Natural defence
DEF_1_0 43	054CANNNS0901C02	TF7040044600	Near Holme village.	Sea defence (natural)	Sand dunes separated by marshland.	611.0	Environment Agency	high	10	11-20	7		Sand dune	2	Natural defence	Natural defence	Natural defence	Natural defence	Linear reducer/ changer	Natural defence

SMP2 reference	NFCDD reference	Grid reference	Location	Defence type	Description	Length (m)	Maintainer	Degree of exposure	Design standard	NFCDD residual life	Overall condition	Manual override condition	Category for condition assessment	Condition used for assessment	Estimate of residual life (yrs) under NAI policy - fastest	Estimated year of failure - fastest	Estimate of residual life (yrs) under NAI policy - slowest	Estimated year of failure - slowest	Defence category	Defence failure (epoch)
DEF_1_044	054CANNNS0901C03	TF7051044550	Near Holme village and Gore Point.	Sea defence (natural)	Low-lying first line of sand dunes/ marshland. Inlet to saltmarsh.	120.5	Environment Agency	high	10	6-10	ĸ		Sand dune	3	Natural defence	Natural defence	Natural defence	Natural defence	Linear reducer/ changer	Natural defence
DEF_1_0 45	054CANNNS0901C04	TF7113045030	Holme Dunes Nature Reserve near Gore Point.	Sea defence (natural)	Vegetated sand dunes.	847.1	Environment Agency	high	10	6-10	4		Sand dune	4	Natural defence	Natural defence	Natural defence	Natural defence	Linear reducer/ changer	Natural defence
DEF_1_0 46	054CANNNS0901C05	TF7155045070	Holme Dunes Nature Reserve near The Firs.	Sea defence (natural)	Natural sand dunes with dragon tooth soft sea defences.	420.6	Environment Agency	high	10	6-10	r	-	Sand dune	L	Natural defence	Natural defence	Natural defence	Natural defence	Linear reducer/ changer	Natural defence
DEF_1_0 47	054CANNNS0901C06	TF7194444960	In front of Broadwater Reserve.	Sea defence (natural)	Vegetated sand dunes.	430.9	Environment Agency	high	10	6-10	4		Sand dune	4	Natural defence	Natural defence	Natural defence	Natural defence	Linear reducer/ changer	Natural defence
DEF_1_04 8	054CANNNS0902C01	TF7202944811	From Broadwater 'The Firs' running inland TF7196044970 to TF7204344788.	Sea defence (man- made)	Well-vegetated earth flood bank.	173.4	Environment Agency	high	10	11-20	с		Sea bank	3	10	2017	15	2022	Linear stopper	-
DEF_1_049	054CANNNS0902C02	TF7208844686	From around 150 metres north of Hun outfall sluice to Hun outfall sluice TF7204344788 to TF7209244681.	Sea defence (man- made)	Concrete revetment on vegetated earth flood bank.	138.0	Environment Agency	high	10	11-20	с		Sea bank	3	10	2017	15	2022	Linear stopper	-
DEF_1_0 50	054CANNNS0902C03	TF7222344401	From Hun outfall sluice to eastward turn in bank.	Sea defence (man- made)	Well-vegetated earth flood bank.	314.6	Environment Agency	high	10	11-20	2		Sea bank	2	15	2022	25	2032	Linear stopper	1/2
DEF_1_0 51	054CANNNS0902C04	TF7222344401	West to east run on flood bank TF7222244413 to TF7266444335.	Sea defence (man- made)	Vegetated, revetted earth flood bank.	443.8	Environment Agency	-	10	11-20	2		Sea bank	2	15	2022	25	2032	Linear stopper	1/2

SMP2 reference	NFCDD reference	Grid reference	Location	Defence type	Description	Length (m)	Maintainer	Degree of exposure	Design standard	NFCDD residual life	Overall condition	Manual override condition	Category for condition assessment	Condition used for assessment	Estimate of residual life (yrs) under NAI policy - fastest	Estimated year of failure - fastest	Estimate of residual life (yrs) under NAI policy - slowest	Estimated year of failure - slowest	Defence category	Defence failure (epoch)
DEF_1_052	054CANNNS0902C05	TF7266244332	Corner of flood bank to first access gate on flood bank (Staithe Lane) TF7266444335 to TF7280343918.	Sea defence (man- made)	Vegetated earth flood bank.	491.3	Environment Agency	-	10	11-20	2		Sea bank	2	15	2022	25	2032	Linear stopper	1/2
DEF_1_053	054CANNNS0902C06	TF7280243907	From the first access on flood bank (Staithe Lane) to higher ground TF7280343918 to TF7282043810.	Sea defence (man- made)	Vegetated earth flood bank.	97.1	Environment Agency	-	10	11-20	ę		Sea bank	З	10	2017	15	2022	Linear stopper	~
DEF_1_0 54	054CANNNS0801C01	TF7325043730	Thornham marsh bank TF7281043810 to TF7325043730.	Sea defence (man- made)	Small earth flood bank used as footpath.	500.1	Environment Agency	high	10	1-5	4	2	Sea bank	2	15	2022	25	2032	Linear stopper	1/2
DEF_1_05 5	054CANNNS0802C01	TF7322043810	From seaward side of Marsh House, Thornham TF7325043730 to TF7321743812.	Sea defence (man- made)	Well-vegetated earth flood bank.	85.5	Environment Agency	high	10	1-5	4		Sea bank	4	3	2010	5	2012	Linear stopper	-
DEF_1_0 56	054CANNNS0802C02	TF7322043810	Adjacent to Marsh House, Thornham TF7321743812 to TF7331644007.	Sea defence (man- made)	Vegetated coastal flood bank.	251.9	Environment Agency	high	10	6-10	ę		Sea bank	з	10	2017	15	2022	Linear Stopper	-
DEF_1_057	054CANNNS0802C03	TF7333044001	North east section of bank, Thornham.	Sea defence (man- made)	Marshlands ring bank, Thornham. Coastal vegetated bank.	245.6	Environment Agency	-	ı	11-20	ε		Sea bank	Э	10	2017	15	2022	Linear stopper	~
DEF_1_0 58	054CANNNS0802C04	TF7357044019	Eastern section of bank, Thornham TF7331644007 to TF7375843989.	Sea defence (man- made)	Vegetated earth bank.	199.2	Environment Agency	-		11-20	с		Sea bank	З	10	2017	15	2022	Linear stopper	-

SMP2 reference	NFCDD reference	Grid reference	Location	Defence type	Description	Length (m)	Maintainer	Degree of exposure	Design standard	NFCDD residual life	Overall condition	Manual override condition	Category for condition assessment	Condition used for assessment	Estimate of residual life (yrs) under NAI policy - fastest	Estimated year of failure - fastest	Estimate of residual life (yrs) under NAI policy - slowest	Estimated year of failure - slowest	Defence category	Defence failure (epoch)
DEF_1_0 59	054CANNNS0802C05	TF7375743978	East section of bank, runs into higher ground TF7375843989 to TF7375043800.	Sea defence (man- made)	Thornham ring bank. Vegetated earth bank.	178.5	Environment Agency	-	-	11-20	с		Sea bank	3	10	2017	15	2022	Linear stopper	-
DEF_1_0 59a**	N/A	TF7557744262	Titchwell RSPB reserve east wall TF7557744262 to TF7557444742.	Sea defence (man- made)	Stable and well-vegetated earth embankment.	500.0	RSPB				ю		Sea bank	3	10	2017	15	2022	Linear stopper	-
DEF_1_0 59b**	N/A	TF7557444742	Titchwell RSPB reserve north wall TF7557444742 to TF7501744682.	Sea defence (man- made)	Embankment. Pronounced erosion on north east corner.	600.0	RSPB				e		Sea bank	3	10	2017	15	2022	Linear stopper	-
DEF_1_0 59c**	N/A	TF7501744682	Titchwell RSPB reserve west wall TF7501744682 to TF7495943867.	Sea defence (man- made)	Narrow embankment with variable crest level.	1150.0	RSPB				4		Sea bank	4	3	2010	5	2012	Linear stopper	-
DEF_1_0 59d**	N/A	TF7501244487	Titchwell RSPB reserve Parrinder wall TF7501244487 to TF7549744535.	Sea defence (man- made)	Earth embankment, not suitable for flood defence.	500.0	RSPB				ę		Sea bank	3	10	2017	15	2022	Linear stopper	~
DEF_1_059e**	N/A	TF7498434418 2	Titchwell RSPB reserve boundary between freshwater marsh and reedbed TF74984344182 TF7557744262.	Sea defence (man- made)	Earth embankment formed from local material. Improvements have been undertaken recently.	600.0	RSPB				£		Sea bank	б	10	2017	15	2022	Linear stopper	Ţ
DEF_1_059f**	N/A	TF7557744262	Titchwell RSPB reserve south east corner TF7557744262 to TF7578444190.	Sea defence (man- made)	Earth embankment with a stable and vegetated bank slope. Does not tie in with higher ground to south or east bank to the east.	270.0	RSPB				3		Sea bank	£	10	2017	15	2022	Linear stopper	-

SMP2 reference	NFCDD reference	Grid reference	Location	Defence type	Description	Length (m)	Maintainer	Degree of exposure	Design standard	NFCDD residual life	Overall condition	Manual override condition	Category for condition assessment	Condition used for assessment	Estimate of residual life (yrs) under NAI policy - fastest	Estimated year of failure - fastest	Estimate of residual life (yrs) under NAI policy - slowest	Estimated year of failure - slowest	Defence category	Defence failure (epoch)
DEF_1_0 60	054CANNNS0804C01	TF7661844758	From Gypsy Lane (track) to sand dunes.	Sea defence (natural)	Well-vegetated earth flood bank.	678.6	Environment Agency	high	10	11-20	2	2	Sea bank	2	15	2022	25	2032	Linear stopper	1/2
DEF_1_061	054CANNNS0804C05	TF7662044767	Runs east to west about 300 metres back from now- redundant sand dune.	Sea defence (man- made)	New compacted earth embankment. Geotextile grass reinforcement on seaward face and crest.	469.7	Environment Agency	-	20	11-20	2		Sea bank	2	15	2022	25	2032	Linear stopper	1/2
DEF_1_062***	N/A	TF7700144813	Runs north to south from golf club embankment to EA embankment TF7700144813 to TF7692345112.	Sea defence (man- made)	Well-vegetated earth embankment, protecting practice green to the east.	310.0	Royal West Norfolk golf club	-			3		Sea bank	3	10	2017	15	2022	Linear stopper	~
DEF_1_063***	N/A	TF7692345112	Runs east to west from now-redundant sand dune to revetment protecting clubhouse TF7692345112 to TF7702945130.	Sea defence (man- made)	Well-vegetated earth embankment, protecting practice green to the east.	100.0	Royal West Norfolk golf club	-			e		Sea bank	ß	10	2017	15	2022	Linear stopper	-
DEF_1_06 4***	N/A	TF7702945130	Rock revetment protecting clubhouse promontory TF7702945130 to TF7714245176.	Sea defence (man- made)	Rock revetment.	150.0	Royal West Norfolk golf club	-			2		Revetment	2	15	2022	25	2032	Linear stopper	1/2
DEF_1_06 4a***	N/A	TF7716745169	Rock revetment protecting western extent of golf course TF7716745169 to TF7727145197.	Sea defence (man- made)	Rock revetment.	55.0	Royal West Norfolk golf club	-			N		Revetment	2	15	2022	25	2032	Linear stopper	1/2

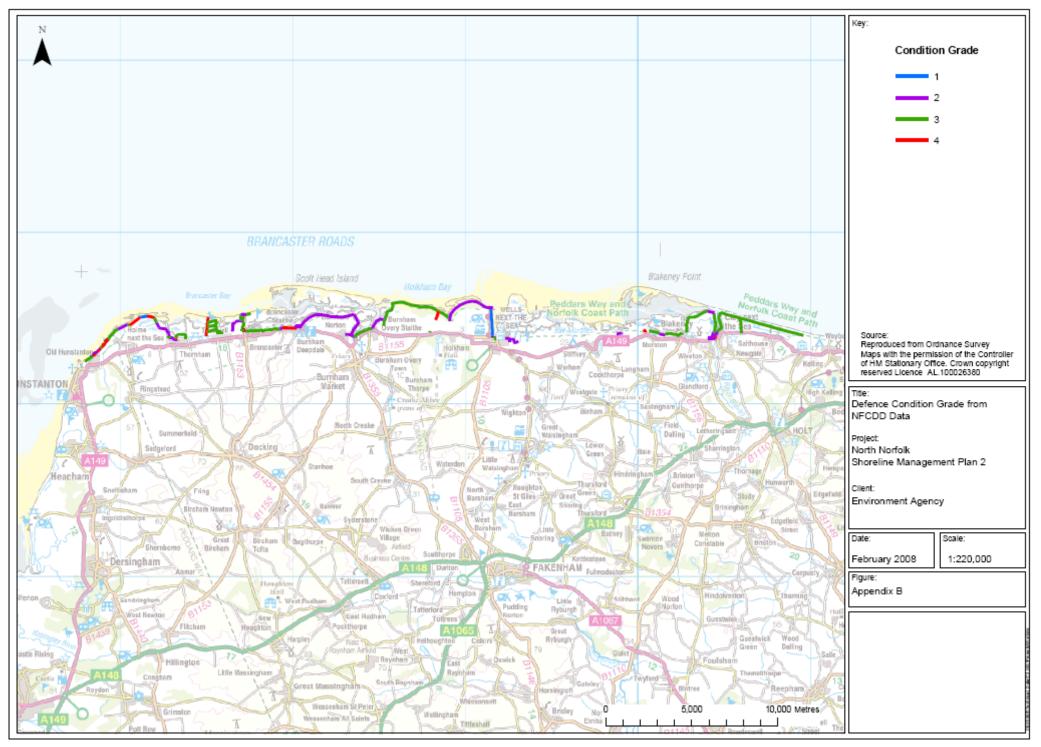
SMP2 reference	NFCDD reference	Grid reference	Location	Defence type	Description	Length (m)	Maintainer	Degree of exposure	Design standard	NFCDD residual life	Overall condition	Manual override condition	Category for condition assessment	Condition used for assessment	Estimate of residual life (yrs) under NAI policy - fastest	Estimated year of failure - fastest	Estimate of residual life (yrs) under NAI policy - slowest	Estimated year of failure - slowest	Defence category	Defence failure (epoch)
DEF_1_0 64b***	N/A	TF7727145197	Protects western extent of golf course TF7727145197 to TF7750045264.	Sea defence (man- made)	Geotextile bags protecting sand dunes. Constructed about 1995.	200.0	Royal West Norfolk golf club	-			e		Sand dune	З	Natural defence	Natural defence	Natural defence	Natural defence	Linear reducer/ changer	Natural defence
DEF_1_0 65	054CANNNS0701C01	TF7706544289	From golf clubhouse to flood bank fork TF7703045130 to TF7706444282.	Sea defence (natural)	Well-vegetated earth flood bank.	908.7	Environment Agency	high	10	11-20	ю		Sea bank	З	10	2017	15	2022	Linear stopper	-
DEF_1_0 66	054CANNNS0702C01	TF7706444204	Brancaster closure bank TF7705044330 to TF7706044250.	Sea defence (natural)	Well-vegetated earth flood bank.	84.3	Environment Agency	low	10	11-20	ę		Sea bank	З	10	2017	15	2022	Linear stopper	-
DEF_1_06 7	054CANNNS0701C02	TF7716044259	Where bank turns east along Beach Road, Brancaster TF7706444282 to TF7716544260.	Sea defence (man- made)	Well-vegetated earth flood bank.	95.0	Environment Agency	high	10	11-20	4		Sea bank	4	З	2010	5	2012	Linear stopper	-
DEF_1_068	054CANNNS0701C03	TF7719344216	Flood bank runs adjacent to properties and ties into higher ground at Broad Lane, Brancaster TF7716544260 to TF7719444215.	Sea defence (man- made)	Vegetated earth flood bank.	54.2	Environment Agency	high	10	11-20	N		Sea bank	2	15	2022	25	2032	Linear stopper	1/2
DEF_1_0 69	054CANNNS0703C01	TF7920044310	From Brancaster to Brancaster Staithe.	Sea defence (natural)	Erratic earth flood bank.	1988.6	Environment Agency	high	10	I	e		Sea bank	3	10	2017	15	2022	Linear stopper	-
DEF_1_0 70	054CANNNS0601C01	TF7938044420	Brancaster Staithe.	Sea defence (natural)	Staithe area - miscellaneous defences.	211.0	Private	high	10	ı	2		Sea bank	2	15	2022	25	2032	Linear stopper	1/2

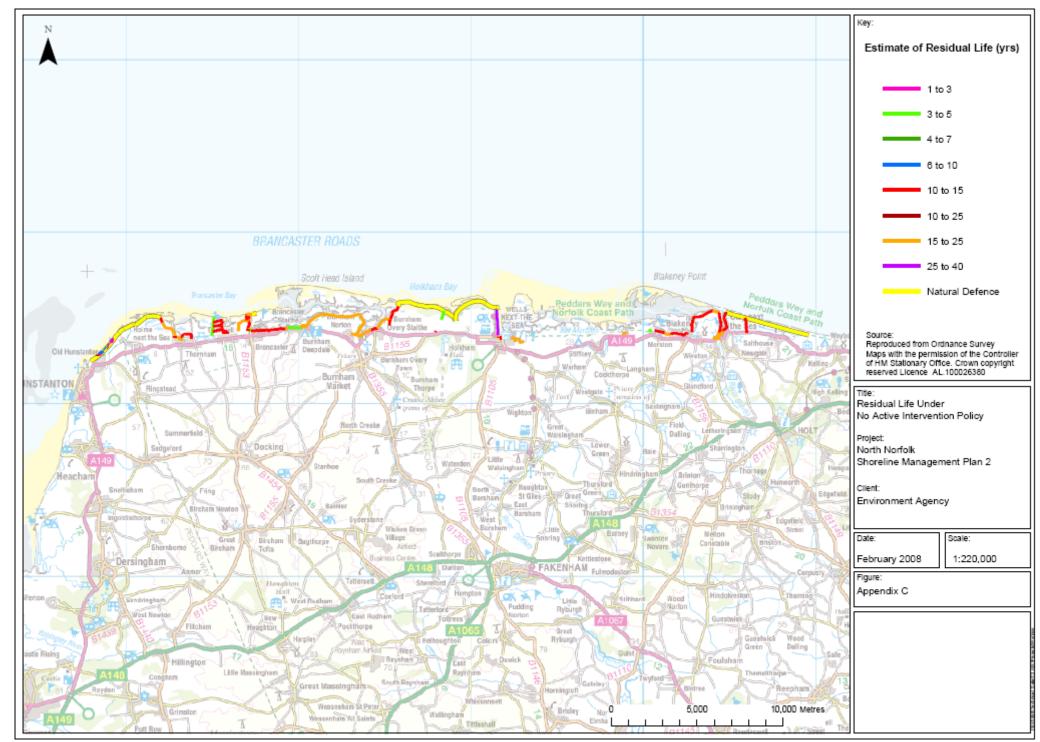
SMP2 reference	NFCDD reference	Grid reference	Location	Defence type	Description	Length (m)	Maintainer	Degree of exposure	Design standard	NFCDD residual life	Overall condition	Manual override condition	Category for condition assessment	Condition used for assessment	Estimate of residual life (yrs) under NAI policy - fastest	Estimated year of failure - fastest	Estimate of residual life (yrs) under NAI policy - slowest	Estimated year of failure - slowest	Defence category	Defence failure (epoch)
DEF_1_0 71	054CANNNS0602C01	TF8020044390	Brancaster Staithe.	Sea defence (natural)	Well-vegetated earth flood bank.	818.0	Environment Agency	high	10	1-5	ю	4	Sea bank	4	З	2010	S	2012	Linear stopper	-
DEF_1_0 72	054CANNNS0603C01	TF8033544463	Property Burnham Deepdale.	Sea defence (man- made)	Well-vegetated earth ring flood bank.	210.7	Private	high	10	11-20	2	2	Sea bank	2	15	2022	25	2032	Linear stopper	1/2
DEF_1_0 73	054CANNNS0604C01	TF8349145198	Burnham Deepdale sea bank.	Sea defence (natural)	Well-vegetated earth flood bank.	3460.7	Environment Agency	high	10	11-20	2	2	Sea bank	2	15	2022	25	2032	Linear stopper	1/2
DEF_1_0 74	054CANNNS0605C01	TF8339243956	Burnham Deepdale east bank.	Sea defence (natural)	Well-vegetated earth flood bank.	1424.4	Environment Agency	high	10	11-20	2	2	Sea bank	2	15	2022	25	2032	Linear stopper	1/2
DEF_1_0 75	054CANNNS0606C01	TF8357143848	From end of sub- reach 5 going east. Burnham Norton bank.	Sea defence (man- made)	Well-vegetated earth flood bank.	209.2	Environment Agency	high	10	6-10	2	2	Sea bank	2	15	2022	25	2032	Linear stopper	1/2
DEF_1_076	054CANNNS0606C02	TF8300844003	From end of sub- reach 5 going west from Burnham Norton bank to Burnham Norton village.	Sea defence (natural)	Well-vegetated low level earth flood bank.	406.2	Environment Agency	high	10	11-20	2		Sea bank	2	15	2022	25	2032	Linear stopper	1/2
DEF_1_0 77	054CANNNS0607C01	TF8418344257	North of Burnham Overy mill.	Sea defence (natural)	Vegetated earth flood bank.	767.2	Environment Agency	high	10		m		Sea bank	3	15	2022	25	2032	Linear stopper	1/2
DEF_1_0 78	054CANNNS0607C02	TF8431044310	Burnham Overy Staithe.	Sea defence (natural)	Private masonry walls protecting residential area.	143.2	Private	high	10		ო		Seawall	3	10	2017	15	2022	Linear stopper	-

SMP2 reference	NFCDD reference	Grid reference	Location	Defence type	Description	Length (m)	Maintainer	Degree of exposure	Design standard	NFCDD residual life	Overall condition	Manual override condition	Category for condition assessment	Condition used for assessment	Estimate of residual life (yrs) under NAI policy - fastest	Estimated year of failure - fastest	Estimate of residual life (yrs) under NAI policy - slowest	Estimated year of failure - slowest	Defence category	Defence failure (epoch)
DEF_1_0 79	054CANNNS0607C03	TF8458344364	Burnham Overy Staithe.	Sea defence (man- made)	Timber sea wall protecting earth bank.	281.6	Private	high	10	•	£		Sea bank	3	10	2017	15	2022	Linear stopper	-
DEF_1_0 80	054CANNNS0608C01	TF8532244905	Extends northwards about one kilometre from Burnham Overy Staithe.	Sea defence (man- made)	Well-vegetated flood bank with concrete revetment.	1036.2	Environment Agency	high	10	11-20	ę	2	Sea bank	2	15	2022	25	2032	Linear stopper	1/2
DEF_1_0 81	054CANNNS0610C01	TF8530044870	Access track to east of Burnham Overy Staithe village TF8530044870.	Sea defence (man- made)	Raised access track contributing secondary defence.	356.8	Environment Agency	low	10	6-10	З	3	Sea bank	Э	10	2017	15	2022	Linear stopper	-
DEF_1_0 81a	054CANNNS0608C02	TF8577045648	Northern one kilometre of flood bank between access track and Gun Hill.	Sea defence (natural)	Well-vegetated earth flood bank.	966.2	Environment Agency	high	10	11-20	с		Sea bank	Э	10	2017	15	2022	Linear stopper	-
DEF_1_0 82	054CANNNS0501C01	TF8687645729	First one kilometre east of Gun Hill TF8576945648 to TF8687645729.	Sea defence (natural)	Very bulbous, well-vegetated sand dunes.	1339.2	Environment Agency	high	10	6-10	Э		Sand dune	3	Natural defence	Natural defence	Natural defence	Natural defence	Linear reducer/ changer	Natural defence
DEF_1_08 3	054CANNNS0501C02	TF8909044800	Lady Ann's Drive, Holkham towards Gun Hill TF8687645728 to TF8908944800.	Sea defence (natural)	Well-vegetated sand dunes extending into fir trees.	2527.1	Environment Agency	high	10	11-20	ю		Sand dune	З	Natural defence	Natural defence	Natural defence	Natural defence	Linear reducer/ changer	Natural defence
DEF_1_084	054CANNNS0504C01	TF8841645353	From Holkham Meals bird hide going southwards TF8841645353 to TF8825344849.	Sea defence (natural)	Holkham cross bank. Well- vegetated but poorly defined undulating flood bank.	530.8	Environment Agency	med	10	6-10	4		Sea bank	4	ю	2010	Q	2012	Linear stopper	1
DEF_1_0 85a	054CANNNS0504C03	TF8793044140	Southernmost 50 metres of sub-reach TF8794044200 to TF8793044140.	Sea defence (natural)	Holkham cross bank. Well- vegetated flood bank.	60.8	Environment Agency	med	10	11-20	ю		Sea bank	Э	10	2017	15	2022	Linear stopper	-

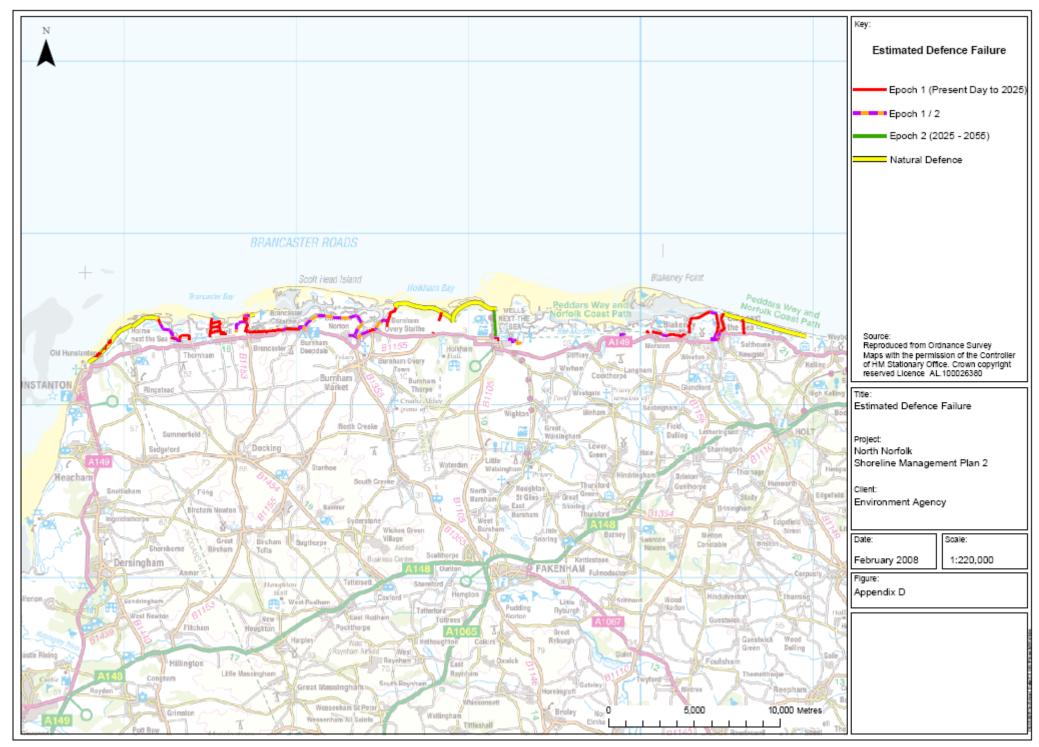
SMP2 reference	NFCDD reference	Grid reference	Location	Defence type	Description	Length (m)	Maintainer	Degree of exposure	Design standard	NFCDD residual life	Overall condition	Manual override condition	Category for condition assessment	Condition used for assessment	Estimate of residual life (yrs) under NAI policy - fastest	Estimated year of failure - fastest	Estimate of residual life (yrs) under NAI policy - slowest	Estimated year of failure - slowest	Defence category	Defence failure (epoch)
DEF_1_0 86	054CANNNS0502C01	TF9083245805	Lady Ann's Drive towards Wells TF8908944800 to TF9083245805.	Sea defence (natural)	Well-vegetated sand dunes extending into fir trees.	2376.7	Environment Agency	high	10	11-20	3	2	Sand dune	2	Natural defence	Natural defence	Natural defence	Natural defence	Linear reducer/ changer	Natural defence
DEF_1_0 87	054CANNNS0502C02	TF9147345590	From start of beach huts on west sands TF9083245805 to TF9147345589.	Sea defence (natural)	Well-vegetated, fenced-off sand dunes with groynes.	698.7	Environment Agency	high	10	11-20	2		Sand dune	2	Natural defence	Natural defence	Natural defence	Natural defence	Linear reducer/ changer	Natural defence
DEF_1_08 8	054CANNNS0502C03	TF9157445543	Between coastguard look-out and RNLI lifeboat station TF9147345589 to TF9157345542.	Sea defence (natural)	Sand dunes protected by gabion revetment and groynes.	114.3	Environment Agency	high	10	6-10	2		Sand dune	2	Natural defence	Natural defence	Natural defence	Natural defence	Linear reducer/ changer	Natural defence
DEF_1_089	054CANNNS0401C01	TF9147345590	Wells-next-the-Sea TF9148245562 to TF9154943915.	Sea defence (man- made)	Wells west bank: sea defence embankment with integral road and light railway. Built from sand and clay with top- soil covering revetment to seaward face.	1658.2	Environment Agency		10	11-20	-		Sea bank	-	25	2032	40	2047	Linear stopper	2
DEF_1_090	054CANNNS0401C02	TF9154743932	Beach Road, Wells- next-the-Sea TF9154943915 to TF9158943858.	Sea defence (man- made)	Wells west bank closure: steel piled flood wall with masonry facings and concrete capping.	83.6	Environment Agency		10	11-20	2		Sea wall	2	15	2022	25	2032	Linear stopper	1/2

SMP2 reference	NFCDD reference	Grid reference	Location	Defence type	Description	Length (m)	Maintainer	Degree of exposure	Design standard	NFCDD residual life	Overall condition	Manual override condition	Category for condition assessment	Condition used for assessment	Estimate of residual life (yrs) under NAI policy - fastest	Estimated year of failure - fastest	Estimate of residual life (yrs) under NAI policy - slowest	Estimated year of failure - slowest	Defence category	Defence failure (epoch)
DEF_1_091	054CANNNS0401C03	TF9158943859	Beach Road, Wells- next-the-Sea TF9154943915 to TF9158943858.	Sea defence (man- made)	Wells west bank closure: steel piled flood wall with masonry facings and concrete capping. Timber flood boards installed October to April brings wall to full flood defence standard of 6.0 metres AOD.	45.2	Environment Agency		10	6-10	e		Sea wall	З	10	2017	15	2022	Linear stopper	1
DEF_1_091a*	N/A	TF9158843814	Wells-next-the-Sea quay wall.	Sea defence (man- made)	Wall running along the footpath/ roadside with boards inserted to complete the defence when required.	150.0	North Norfolk District Council				3		Sea wall	3	10	2017	15	2022	Linear stopper	1
DEF_1_092	054CANNNS0403C01	TF9229243779	East of Wells-next- the-Sea TF9219644248 to TF9305143622.	Sea defence (man- made)	Wells east bank: clay embankment partly revetted with 12,500 concrete revetment blocks.	896.5	Environment Agency	med	10	6-10	7		Sea bank	2	15	2022	25	2032	Linear stopper	1/2
DEF_1_093	054CANNNS0404C01	TF9252943749	Wells-next-the-Sea TF9252943748 to TF9255543571.	Sea defence (man- made)	Wells east bank closure. Running southwards from Wells east bank to Wells allotments.	179.1	Environment Agency		10	11-20	7		Sea bank	2	15	2022	25	2032	Linear stopper	1/2


SMP2 reference	NFCDD reference	Grid reference	Location	Defence type	Description	Length (m)	Maintainer	Degree of exposure	Design standard	NFCDD residual life	Overall condition	Manual override condition	Category for condition assessment	Condition used for assessment	Estimate of residual life (yrs) under NAI policy - fastest	Estimated year of failure - fastest	Estimate of residual life (yrs) under NAI policy - slowest	Estimated year of failure - slowest	Defence category	Defence failure (epoch)
DEF_1_0 94	054CANNNS0301C01	TF9904044129	Stiffkey outfall bank TF9903944128 to TF9874444049.	Sea defence (man- made)	Well-vegetated earth flood bank.	322.6	Environment Agency	high	10	6-10	2		Sea bank	2	15	2022	25	2032	Linear stopper	1/2
DEF_1_0 95	054CANNNS0303C01	TG0042944134	North west of Morston village TF9874544050 to TF9904044100.	Sea defence (man- made)	Poorly-defined and overgrown earth flood bank.	191.0	Environment Agency	high	10	1-5	4		Sea bank	4	З	2010	5	2012	Linear stopper	~
DEF_1_0 96	054CANNNS0305C01	TG0067044060	Between Morston and Blakeney TG0067044060 to TG0125244060.	Sea defence (man- made)	Well-vegetated earth flood bank.	627.1	Environment Agency	high	10	1-5	æ		Sea bank	3	10	2017	15	2022	Linear stopper	-
DEF_1_0 97	054CANNNS0305C02	TG0161043980	Between Morston and Blakeney TG0161043980 to TG0125244060.	Sea defence (man- made)	Vegetated earth embankment.	384.8	Environment Agency	high	10	6-10	7		Sea bank	2	15	2022	25	2032	Linear stopper	1/2
DEF_1_0 98	054CANNNS0306C01	TG0256644090	West of Blakeney TG0164044030 to TG0257044080.	Sea defence (man- made)	Earth flood bank.	1088.8	Environment Agency	high	10	6-10	З		Sea bank	3	10	2017	15	2022	Linear stopper	-
DEF_1_0 99	054CANNNS0308C01	TG0281144271	Blakeney sea front car park TG0281144270 to TG0283944131.	Sea defence (man- made)	Earth flood bank with concrete revetment.	143.2	Environment Agency	high	10	6-10	ю		Sea bank	3	10	2017	15	2022	Linear stopper	-
DEF_1_1 00	054CANNNS0308C02	TG0282044370	Blakeney boatyard TG0282144384 to TG0281144270.	Sea defence (man- made)	Boatyard in front of earth flood bank.	99.8	Environment Agency	high	10	6-10	т		Sea bank	3	10	2017	15	2022	Linear stopper	.
DEF_1_1 01	054CANNNS0308C03	TG0287444840	Blakeney to Blakeney Eye TG0287444840 to TG0282144384.	Sea defence (man- made)	Vegetated earth flood bank.	485.0	Environment Agency	high	10	1-5	e		Sea bank	3	10	2017	15	2022	Linear stopper	~


SMP2 reference	NFCDD reference	Grid reference	Location	Defence type	Description	Length (m)	Maintainer	Degree of exposure	Design standard	NFCDD residual life	Overall condition	Manual override condition	Category for condition assessment	Condition used for assessment	Estimate of residual life (yrs) under NAI policy - fastest	Estimated year of failure - fastest	Estimate of residual life (yrs) under NAI policy - slowest	Estimated year of failure - slowest	Defence category	Defence failure (epoch)
DEF_1_1 02	054CANNNS0308C04	TG0402345380	Between Blakeney and Blakeney Eye TG0402245380 to TG0287444840.	Sea defence (man- made)	Well-vegetated but poorly- defined earth flood bank.	1356.2	Environment Agency	high	10	1-5	3		Sea bank	ю	10	2017	15	2022	Linear stopper	-
DEF_1_1 03	054CANNNS0308C05	TG0441445281	North of Blakeney Eye TG0441445281 to TG0402245380.	Sea defence (man- made)	Wide crested but poorly- defined earth flood bank.	403.5	Environment Agency	high	10	1-5	N		Sea bank	2	15	2022	25	2032	Linear stopper	1/2
DEF_1_104	054CANNNS0308C06	TG0440745182	Blakeney Eye TG0444045170 to TG0441445281.	Sea defence (natural)	Natural higher ground at Blakeney Eye features the remains of a hermit's chapel.	100.1	Environment Agency	high	10	6-10	2		Sea bank	2	10	2017	15	2022	Linear stopper	-
DEF_1_1 05	054CANNNS0308C07	TG0439344108	Cley to Blakeney earth bank TG0439244107 to TG0444045170.	Sea defence (man- made)	Well-vegetated earth bank.	1112.7	Environment Agency	high	10	6-10	ę		Sea bank	б	10	2017	15	2022	Linear stopper	~
DEF_1_106	054CANNNS0308C08	TG0427343824	Coast Road, Cley to new bank/Cley Blakeney bank junction TG0427243824 to TG0439244107.	Sea defence (man- made)	Well-vegetated earth bank with access track to landward face.	317.8	Environment Agency	high	10	6-10	N		Sea bank	2	15	2022	25	2032	Linear stopper	1/2
DEF_1_1 07	054CANNNS0312C02	TG0427343824	Between Marsh Lane and Cley closure bank TG0427243823 to TG408543817.	Sea defence (man- made)	Vegetated clay flood bank.	186.6	Environment Agency	low	10	11-20	N		Sea bank	2	15	2022	25	2032	Linear stopper	1/2
DEF_1_1 08	054CANNNS0312C01	TG0447843768	Cley-next-the-Sea TG0447743767 to TG0427243823.	Sea defence (man- made)	Clay flood bank adjacent A149 coast road.	219.5	Environment Agency	high	10	11-20	7		Sea bank	2	15	2022	25	2032	Linear stopper	1/2

SMP2 reference	NFCDD reference	Grid reference	Location	Defence type	Description	Length (m)	Maintainer	Degree of exposure	Design standard	NFCDD residual life	Overall condition	Manual override condition	Category for condition assessment	Condition used for assessment	Estimate of residual life (yrs) under NAI policy - fastest	Estimated year of failure - fastest	Estimate of residual life (yrs) under NAI policy - slowest	Estimated year of failure - slowest	Defence category	Defence failure (epoch)
DEF_1_109	054CANNNS0311C01	TG0443043938	West of Cley village from clay bank to access steps at 'Beau Rivage' TG0447743767 to TG0442943937.	Sea defence (man- made)	Concrete flood wall: steel sheet piles with poured concrete outer skin.	185.4	Environment Agency	high	10	6-10	4		Sea wall	4	ى	2012	7	2014	Linear stopper	٢
DEF_1_1 0	054CANNNS0311C02	TG0447443987	'Beau Rivage' access steps to Cley quay access ramp TG0442943937 to TG0447343987.	Sea defence (man- made)	R.C. flood wall – Promenade.	85.6	Environment Agency	high	10	6-10	2		Sea wall	2	15	2022	25	2032	Linear stopper	1/2
DEF_1_11 1	054CANNNS0311C03	TG0453844048	From Cley quay access ramp to timber steps TG0447343987 to TG0453744048.	Sea defence (man- made)	Rock and mortar, reinforced concrete flood wall.	96.0	Environment Agency	high	10	6-10	2		Sea wall	2	15	2022	25	2032	Linear stopper	1/2
DEF_1_11 2	054CANNNS0311C04	TG0457044157	Timber access steps to junction of three banks TG0453744048 to TG0457044156.	Sea defence (man- made)	Well maintained clay flood bank.	138.6	Environment Agency	high	10	6-10	7		Sea bank	2	15	2022	25	2032	Linear stopper	1/2
DEF_1_113	054CANNNS0309C01	TG0457044157	North of Cley village TG0417044306 to TG0448544603.	Sea defence (man- made)	Well-vegetated sea defence bank with access track on western perimeter.	183.8	Environment Agency	high	10	11-20	ĸ		Sea bank	3	10	2017	15	2022	Linear stopper	1
DEF_1_114	054CANNNS0310C01	TG0470444869	TG0 From Cley village (Three Banks) towards Cley New Cut outfall TG0457044156 to TG0470344869.	Sea defence (man- made)	Cley beach road flood bank. Vegetated earth flood bank with intermittent low spots.	855.2	Environment Agency	high	10	6-10	с		Sea bank	ю	10	2017	15	2022	Linear stopper	F
DEF_1_11 5	054CANNNS0310C02	TG0478545287	From Cley New Cut outfall to coastguard look-out TG0470344869 to TG0479045290.	Sea defence (man- made)	Well-vegetated earth flood bank.	446.9	Environment Agency	high	10	6-10	e		Sea bank	З	10	2017	15	2022	Linear stopper	۲

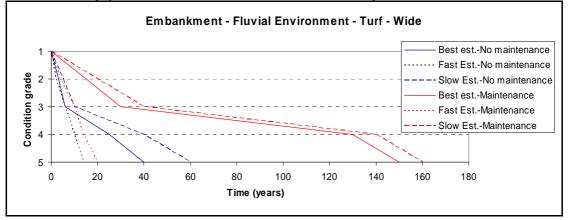

SMP2 reference	NFCDD reference	Grid reference	Location	Defence type	Description	Length (m)	Maintainer	Degree of exposure	Design standard	NFCDD residual life	Overall condition	Manual override condition	Category for condition assessment	Condition used for assessment	Estimate of residual life (yrs) under NAI policy - fastest	Estimated year of failure - fastest	Estimate of residual life (yrs) under NAI policy - slowest	Estimated year of failure - slowest	Defence category	Defence failure (epoch)
DEF_1_116	054CANNNS0201C01	TG0427343824	Kelling Hard to Cley coastguard look-out TG0959844012 to TG0468645759.	Sea defence (natural)	Shingle bank graded by bulldozers. From winter 2005 re- profiling of shingle ridge has stopped. Shingle ridge to form natural profile.	4981.4	Private	high	10	6-10	ю		Shingle ridge	3	Natural defence	Natural defence	Natural defence	Natural defence	Linear reducer/ changer	Natural defence
DEF_1_117	054CANNNS0202C01	TG0598044110	Cley east bank closure TG0591144218 to TG0579543439.	Sea defence (man- made)	Vegetated earth cross bank running for 866 metres northwards dividing Cley / Salthouse marsh into two compartments.	861.9	Environment Agency	low	10	11-20	ю		Sea bank	б	10	2017	15	2022	Linear stopper	-

F 2.2 Defence residual life assessment

F 2.3 Estimated defence failure assessment

F2.6 Residual life under continued maintenance

This section provides an assessment to determine the residual life with maintenance for nine of the coastal embankments. Two assessments have taken place for each embankment:


- when the condition grade of the embankment reaches 5 (that is, very poor condition) in a 'with maintenance' scenario and
- when the standard of protection reaches once a year due to sea level rise.

The analysis is based on limited available data and broad-scale methods. It has been validated by the Environment Agency's asset management team's local knowledge and judgement.

F2.6.1 Method 1 - assessment when condition grade reaches 5

Table F2.7 shows each relevant policy development zone (PDZ) and the condition of each embankment in the specified zone. The standard of protection for each embankment has been given along with the condition used for assessment. An estimated range (years) until each embankment reaches condition 5 is provided. 1 refers to an embankment that is in very good condition and 5 refers to an embankment in very poor condition.

Figure F2.4: Condition grade against time for embankments-fluvial environment-turf-wide. The condition grade of each embankment reaches very poor as time increases from 0-180 years.

This graph was taken from Science Report SC060078/SR: Guidance on determining asset deterioration and the use of condition grade deterioration curves (Environment Agency, 2009). This is the same source for the analysis of no active intervention residual lives (see section F2.1), but for this analysis we have used the deterioration curves for the 'with maintenance' scenarios. The approach is based on the same assumptions used for assessing residual life under no active intervention:

- We have assumed the defences are halfway between two condition grades (that is, if the current CG is 3, we've assumed it is halfway through the period that it takes to deteriorate to CG4 according to the tables).
- CG5 means failure.

Policy development zone	Condition used for assessment	Range (fastest to slowest estimate)					
PDZ1C	3	(8 to 70 years)					
PDZ2D	2	(10 to 125 years)					
PDZ2G.1	2	(10 to 125 years)					
PDZ2G.3	2	(10 to 125 years)					
PDZ2J	1	(15 to 146 years)					
PDZ2L	2	(10 to 125 years)					
PDZ3A.2	3	(8 to 70 years)					
PDZ3A.3	2	(10 to 125 years)					
PDZ3A.5	3	(8 to 70 years)					

Table F2.7: Time for embankment to reach very poor condition (CG5)

Data used in table F2.7 can be found in table F2.6.

For policy development zones 1C, 3A.2 and 3A.5, table F2.7 shows the embankments all have a condition grade of 3 with an estimated range of eight to 70 years before the embankment reaches grade 5. Embankments in PDZs 2D, 2G.1, 2G.3, 2L and 3A.3 all have a condition grade of 2 with an estimated range of 10 to 125 years before grade 5 is reached. The embankment in PDZ2J has a condition grade of 1 with an estimated range of 15 to 146 years until grade 5 is reached. See section 3 for conclusions.

F2.6.2 <u>Method 2 - assessment when the standard of protection (SoP) becomes</u> <u>1:1 year</u>

Table F2.8 has used the extreme water levels table (table C3.2 appendix C - baseline processes, June 2009) and the Defra (2006) sea level rise guidance (table 2.1 in the main SMP document) to calculate how long it will take for the embankment to get to the 1:1 year standard of protection (SoP). The sea level rise guidance has been used over the period 1990 to 2105.

We currently do not have defence crest levels. There is information in the Environment Agency's National Flood and Coastal Defence Database (NFCDD) about their existing standard of protection, which is 1:10 a year for all assets. However, the asset management team has indicated that this is

uncertain and has asked this analysis to be done for a 1:25 a year SoP as well to test the sensitivity.

We have used the SoP as a basis for the analysis as follows. We have assumed the water level is the dominant factor in the SoP (not waves). We can then calculate how long it takes sea level rise to reduce the SoP from its current standard to 1:1. We have used that to indicate when a defence could fail.

Table 1 2.0. Time for 301 to reduce from 1.10 a year to 1.1 a year									
PDZ	Standard of protection	of return period return period (m) per		Level difference(m)	Year of failure				
PDZ1C	1:10	4.99	4.46	0.53	2072				
PDZ2D	1:10	4.7	4.16	0.54	2073				
PDZG.1	1:10	4.52	3.96	0.56	2074				
PDZG.3	1:10	4.52	3.96	0.56	2074				
PDZ2J	1:10	4.47	3.87	0.6	2078				
PDZ2L	1:10	4.47	3.87	0.6	2078				
PDZ3A.2	1:10	4.24	3.67	0.57	2075				
PDZ3A.3	1:10	4.24	3.67	0.57	2075				
PDZ3A.5	1:10	4.24	3.67	0.57	2075				

Table F2.8 shows that the residual life is very similar for all these defences between 2070 and 2075, some way into epoch 3. The only difference is caused by the fact that the difference between the 1:1 and 1:10 for water levels varies along the shoreline. Given the uncertainty in the various datasets, the calculated residual life values can be assumed to be the same.

PDZ	Standard of protection	Water level for SoP return period (m)	Water level for 1:1 return period (m)	Level difference(m)	Year of failure
PDZ1C	1:25	5.20	4.46	0.74	2088
PDZ2D	1:25	5.92	4.16	1.76	2105
PDZG.1	1:25	4.75	3.96	0.79	2092
PDZG.3	1:25	4.75	3.96	0.79	2092
PDZ2J	1:25	4.70	3.87	0.83	2094
PDZ2L	1:25	4.70	3.87	0.83	2094
PDZ3A.2	1:25	4.47	3.67	0.8	2092
PDZ3A.3	1:25	4.47	3.67	0.8	2092
PDZ3A.5	1:25	4.47	3.67	0.8	2092

Table F2.9: Time for SoP to reduce from 1:25 a year to 1:1 a year

Table F2.9 shows the 1:25 year standard of protection for each of the defences in the given PDZ. Compared to table 2, the residual life is generally about 15 to 20 years longer - up to the end of epoch 3.

F2.6.3 <u>Conclusions and recommendations</u>

The results of the two assessments lead to the following conclusions:

Method 1: the application of generic deterioration curves to determine the residual life until the condition grade reaches very poor, produces a very wide range of results. In line with the guidance report (EA, 2009), local judgement is needed to assess how the asset fits within this wide range, based on structural characteristics and exposure. Based on the broad-scale SMP level overview, an initial assessment would be as follows:

- The deterioration curves were actually developed for fluvial conditions (there are no curves for grassed coastal embankments). In principle, the presence of waves and the saline coastal environment are likely to lead to more rapid deterioration.
- The banks are relatively wide and are very rarely exposed to waves or currents.

This would suggest that the deterioration rates are in the middle of the spectrum, suggesting a residual life of 40 to 60 years.

Method 2: the application of sea level rise rates to determine when the standard of protection would reach 1:1 also produces a range of outcomes because the crest level/current standard of protection of the defences is uncertain. The resulting residual life is 60 to 80 years.

The content of this section can inform the SMP's policy statements. The SMP's action plan contains an action to provide more certainty about the residual life of these sea banks to inform shoreline management, as this is likely to be an important factor in the timing of the medium- and long-term policies.

F3 Baseline scenarios

F3.1 Introduction

F3.1.1 Aim

The aim of this section is to provide an appreciation of how the shoreline is behaving and the influence that coastal management has on this behaviour. This will provide the basis on which flood and coastal erosion risks are determined. This analysis will then be used to develop and appraise policy scenarios.

This is divided into three components:

- A description of the baseline response assessments for the 'no active intervention' (NAI) scenario. This assumes that defences are no longer maintained and will fail over time.
- A description of the baseline response assessment for a 'with present management' (WPM) scenario. This assumes that all defences are maintained to provide a similar level of protection to that provided at present.
- Maps to illustrate predicted shoreline change.

Both the NAI and WPM scenarios will discuss coastal evolution in three epochs: present day to 2025, 2026 to 2055 and 2056 to 2105.

F3.1.2 Geographical units

The north Norfolk coastline has been sub-divided into eight frontages. These were derived mainly using the natural geomorphological breaks found along this coastline. However, these boundaries are often blurred and are subsequently hard to define. As a result, volumetric analysis of recent Environment Agency profile monitoring data was used to define these boundaries more clearly. The method and results of this analysis are detailed in appendix C. The eight frontages are described below and illustrated in figure F3.1.

- Frontage A (Old Hunstanton) start of dunes at Old Hunstanton (western boundary of SMP study area) to Gore Point.
- Frontage B (Holme-next-the-Sea and Thornham) north eastern boundary of Old Hunstanton golf course to western limit of Brancaster bay (just to the east of Thornham).
- Frontage C (Titchwell and Brancaster) western limit of Brancaster bay to western limit of Scolt Head Island.
- Frontage D (Scolt Head Island) western limit of Brancaster to Norton Hills.
- Frontage E (Holkham Bay) Norton Hills to Bob Hall's Sands.
- Frontage F (Stiffkey and Warham marshes) Bob Hall's Sands to western limit of Blakeney Spit.
- Frontage G (Blakeney Spit) western limit of Blakeney Spit to Blakeney Eye.
- Frontage H (Cley and Salthouse) Blakeney Eye to Kelling Hard (eastern boundary of SMP study area).

This part of the appendix also assesses the longshore interactions between these frontages. This has been completed by further dividing the coast into three 'super-frontages'. A 'super-frontage' for the purpose of this appendix consists of an unspecified number of frontages (as described in section F3.1.2). There will be geomorphological interactions between the frontages within a particular 'super-frontage', but these interactions are generally limited to that particular 'super-frontage'. This definition is intended to aid the definition of policy units undertaken in stage 3, as it determines how much

external coastal processes interact between different areas of the north Norfolk coast.

The 'super-frontages' are as follows (from west to east along the north Norfolk coast):

- Super-frontage 1 start of dunes at Old Hunstanton to western limit of Brancaster bay (frontages A and B).
- Super-frontage 2 western limit of Brancaster bay to western limit of Blakeney Spit (frontages C, D, E and F).
- Super-frontage 3 western limit of Blakeney Spit to Kelling Hard (frontages G and H).

Figure F3.1 Frontages used for developing baseline scenarios

F3.1.3 Task method

The first stage in completing this task was to collate all relevant baseline information for each frontage. These baseline data were originally collected as part of the assessment of coastal processes. For this report, however, it was necessary to highlight the relevant information for each frontage and assemble it into a useful format. A table was therefore designed to present this information that included a section for the baseline scenario predictions. This table is based on the presentation of results suggested for this task in the SMP guidance (Defra 2006). This has effectively allowed a quick reference guide to be created for each frontage.

The table is divided into four main sections, with the first three summarising the baseline conditions and the final one outlining the baseline scenario assessment outcomes. The individual sections are:

 Section 1 – Description. Includes information about the physical characteristics of the frontage and the existing coastal defences and management practices.

- Section 2 **Baseline information**. Includes data on water levels, extreme water levels, currents, tides, wave climate, patterns of erosion and accretion and sediment sources and transport.
- Section 3 **Geomorphology**. Includes data about processes, patterns of change and geomorphological controls, sensitivities and influences.
- Section 4 **Baseline management scenarios**. This section describes the results of the scenario assessment for both the WPM and NAI scenarios and outlines the thought process behind the scenario results.

It is useful to mention here that, if the individual sections in the tables are blank, specific information for the relevant frontage was not available when this report was completed. In some cases where this information was not available, it was felt there was enough information relevant in other sections to provide an accurate assessment of the baseline scenarios.

The tables are provided in section F3.6. These tables will also be referred to individually in the text in section F3.3.

After collating the baseline data, the actual scenario assessment began. The geomorphology of the frontage was studied, leading to an in-depth knowledge of the main processes that occur to shape the frontage and the importance of longshore interactions between the frontages. In some cases there were conflicting ideas about the formation of certain landforms and in these situations expert judgement was needed to choose the most likely mechanism involved. This information was then compared to the future evolution predictions discussed in both the North Norfolk Coastal Habitat Management Plan (CHaMP 2003) and Futurecoast (Halcrow 2002). Finally, a description of future evolution was completed using a combination of these sources and geomorphological knowledge gained. This description was also broken down into the three epochs for both scenarios. The results were written up into the table discussed earlier.

The future shoreline development was then mapped and two figures were produced for each frontage (NAI and WPM). Where possible, the rates recorded during the recent Environment Agency monitoring programme were applied to the future prediction of shoreline evolution. In most cases one rate was applied to the entire frontage. This rate was calculated from an average of the rates for each individual profile for that particular frontage. In some cases specific profiles showed highly variable trends and only the rate at high water was available. In these cases, the profile was excluded from calculations of an average rate for the specific frontage. The average rates used are in table F3.1.

Finally, the technical description of the processes under the baseline scenarios was described in a more accessible format, focusing on an overall understanding of coastal behaviour within the frontages and their interactions. This description is included in section F3.2. The tables and figures relating to each frontage are in section F3.6.

Table F3.1 Environment Agency monitoring rates (metres a year) 1996to 2006

	EA PROFILE NO	MHWS	MLWN/S	MEAN
A	N1D4	0.87	1.02	2.20
	N1D5	4.73	0.98	1.41
	Average	2.80	1.00	1.81
в	N1D7	-0.95	-3.46	-3.37
	N1C1	-1.64	-2.58	-2.69
	N1C2	-4.33	-2.26	-2.07
	N1C3	0.58	0.73	0.67
	Average	-1.59	-1.89	-1.87
с	N1C4	-0.87	0.18	-0.04
	N1C5	-0.15	6.55	2.66
	N1C6	0.02	-3.17	-0.10
	Average	-0.33	1.19	0.84
D	N1B1	3.57	-1.97	-0.04
	N1B2	-1.02	-4.11	-1.88
	N1B3	-0.51	-2.33	-1.15
	N1B4	-1.02	-1.20	-1.26
	N1B5	-0.62	1.93	0.19
	N1B6A	-0.73	-0.66	0.13
	Average	-0.06	-1.39	-0.67
E	N1A1	-3.49	-3.49	-4.49
	N1A2	-3.02	5.10	-0.27
	N1A3	-0.98	-0.18	0.50
	N1A4	7.64	-1.46	1.50
	N1A5	-1.24	-2.11	-1.82
	N1A6	-2.37	-1.20	-1.74
	Average	-0.58	-0.56	-1.05
F	N2D1	6.22	-0.04	2.50
	N2D2	-1.06	-2.07	-0.01
	N2D3	-2.22	-3.06	-2.01
	N2D4	0.51	-0.98	0.70
	N2D5	-1.16	-6.73	-0.19
	N2D6	-1.93	-4.33	1.59
	Average	0.06	-2.87	0.43
G	N2C2	-2.29	-15.80	-7.67
	N2C3	-0.11	-1.49	-0.61
	N2C4	-1.53	-1.35	-1.46
	Average	-1.31	-6.21	-3.25
н	Frontage H - mod	ified due to	shingle ride	ge recycling

The EA profile number is the number allocated to the profile by the Environment Agency.

F3.1.4 Sea level rise

For the purpose of assessing baseline scenarios, the rate of sea level rise will need to be taken into account. The following summarises the current guidance relating to sea level rise.

Defra's sea level rise guidance for the East of England, East Midlands, London and south east England (south of Flamborough Head) is summarised in table F3.2 (FCDPAG3 Economic Appraisal Supplementary Note to Operating Authorities – Climate Change Impacts October 2006). All values are rounded to the nearest 0.5 millimetres a year (mmyr⁻¹).

Time period	Net rate of sea level rise (mmyr ⁻¹)	Total sea level rise (mm)
1990 to 2025	4.0	140
2025 to 2055	8.5	255
2055 to 2085	12.0	360
2085 to 2115	15.0	450

Table F3.2 Sea level rise guidance (Defra 2006)

F3.1.5 Assumptions and general notes

The following assumptions have been applied when assessing shoreline evolution for the north Norfolk frontages.

- The predicted year that a defence is expected to fail in is assumed to signify total defence failure. It has therefore been assumed that, once a defence has "failed", it will have no residual effect as a defence.
- All accretion/erosion rates quoted are an average for the entire frontage length (unless stated) and can mask local trends of erosion and accretion.
- All rates and predictions of future morphological development in the WPM scenario assume that WPM will continue in the adjoining SMP areas (particularly SMPs 4, 6, 7 and 8), as well as the adjoining lengths of coast.

The following notes summarise sources of individual erosion/accretion rates as well as a number of points that need to be considered when reading the main text.

- Vertical and horizontal accretion/erosion rates have been taken from the Environment Agency's Shoreline Management Group's Coastal Trends Analysis report (2007). In some cases, these are an average of those experienced throughout the entire frontage between 1991 and 2006.
- Although increased storminess is predicted in the future as an effect of climate change, a quantitative assessment of these effects has not been included in any of the scenarios above. Currently there are no long-term datasets available to identify specific trends in the occurrence of storms. However, the coastline development discussed in each scenario may

actually occur earlier than predicted if the frequency and strength of storms increases.

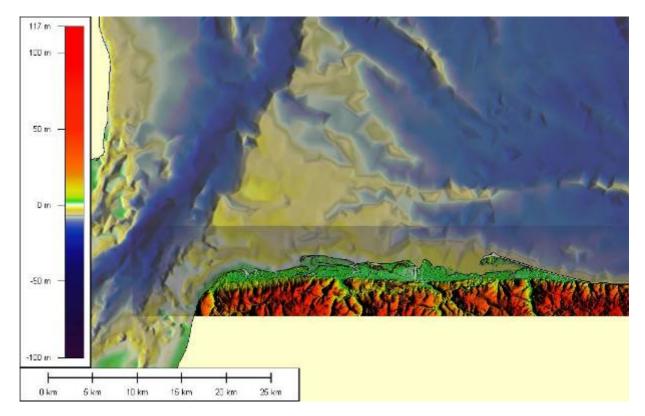
• The Defra rates of sea level rise quoted are intended as conservative estimates so the scenarios represent the worst case scenario.

F3.1.6 Lay-out

Section F3.2 will provide a brief overview of the coastal processes and geomorphological interactions along the north Norfolk coast. This is a summary of the assessment of coastal processes report and provides the knowledge used to assess the baseline scenarios.

Section F3.3 will discuss the large-scale interactions along the north Norfolk SMP frontage. Each section presents an overview of the geomorphological characteristics and predicted shoreline evolution under the two baseline scenarios for each individual frontage. It then assesses the longshore interactions between each frontage in a 'super-frontage'.

The final sections of this report will provide a broad summary of the north Norfolk area as a whole and the main conclusions drawn from the assessment, as well as the references used in the analysis itself.

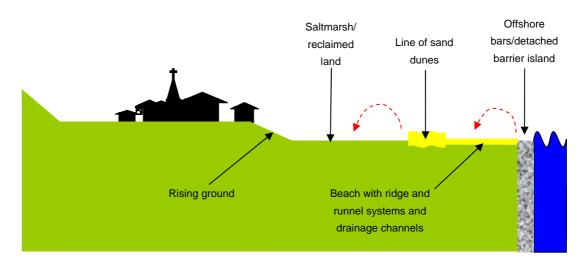

F3.2 SMP-wide overview of north Norfolk coastal processes

Before discussing the predicted development of each individual frontage, it is useful to give an overview of the north Norfolk coast as a whole. Figure F3.2 presents a combined bathymetry and Synthetic Aperture Radar (SAR – a form of radar commonly used in remote sensing and mapping) data plot for the entire north Norfolk coast. This figure identifies a number of important features that shape the evolution of this coast:

- There is a clear definition between the higher ground and the lower coastal plain. This 'ridge' runs west to east, starting at the northern edge of the cliffs at Old Hunstanton and finishing near Weybourne.
- There is a large expanse of sediment overlying harder geology known as the Burnham Flats.
- Under 'normal' conditions (that is, non-storm conditions) sediment is exchanged between the offshore banks and the coast.
- The 'coastline' as we know it provides the interface between the offshore bank and the coast so the coastline is constantly changing.
- It is a sediment-rich coastline, so it is dominated by depositional features, such as barrier islands and spits with recurved distal ends.
- The alignment of the spit features suggests a movement of sediment to the west. However, the estimates presented in the Southern North Sea Sediment Transport report (2002) for a westward drift are relatively small and cannot be compared with present day accretion rates, or indeed with long-term rates.

- It is likely that there is a westward sediment transport pathway during low magnitude, high frequency events ('normal' conditions). This involves relatively small volumes of sediment and the redistribution of sediment already present in the north Norfolk system. There is therefore no major source from the east.
- In high-magnitude, low-frequency events, there is a strong north to south movement across the Burnham Flats and Docking Shoal. This moves large volumes of sediment onshore.
- During extreme events, nearshore movement is west to east and accretion occurs as material moves into the tidal deltas.
- The main sources of sediment are:
 - fine sand deposits within Burnham Flats and Docking Shoal
 - o secondary source sand deposits within the Wash embayment
 - internal sources of sediment moving between neighbouring frontages.

Figure F3.2 Combined SAR/bathymetry plot of the north Norfolk coastline

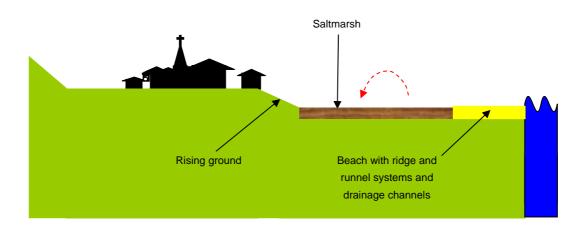


Despite the apparent complexity of the coastline, there are two types of geomorphological system that can be used to classify each frontage defined in section F3.1.2.

The first system is the barrier island feature shown in figure F3.3. This system consists of a number of offshore bar features at its seaward edge, progressing to a beach system with various drainage channels and ridge and runnel features. The beach is usually backed by a line of sand dunes, with

natural saltmarsh and/or reclaimed land inland of this. If the land is reclaimed, it is usually lower than the natural saltmarsh. Examples of this type of system can be found at Gore Point and Blakeney Point.

In terms of the evolution of this type of frontage, due to sea level rise the whole frontage will move towards land until the sand dunes reach a natural or man-made constraint, such as higher ground or a fixed hard defence.


Figure F3.3 Barrier system

The second system is the open coast system (see figure F3.4). This system consists of a number of offshore bar features or a detached barrier island at its seaward edge, progressing to a beach system with various drainage channels and ridge and runnel features. Rather than the beach being backed by sand dunes as in the barrier system, the beach in the open coast system naturally transgresses into saltmarsh. This saltmarsh is bounded at its inland edge by higher ground. Examples of this type of system can be found in Brancaster bay, Holkham bay and at Stiffkey marshes. In some cases, such as at Holkham bay, these frontages have been modified by reclamation so the progression does not necessarily take the form described here.

In terms of the evolution of this type of frontage, due to sea level rise the whole frontage will also move towards land, gradually squeezing the saltmarsh between the rising sea levels and the higher ground. This process will occur until there is no saltmarsh left.

The following assessment of baseline scenarios will be carried out on the basis of the wide-scale interactions and processes occurring along the north Norfolk coast. At the policy development stage it will also be necessary to consider the small-scale interactions at frontage level, as provided for each frontage in detail in section F3.5.

F3.3 Description of each frontage and interactions

This section of the appendix provides a brief summary of the geomorphological characteristics and outcome of the baseline scenarios assessment for each frontage. It then explains the longshore interactions between the individual frontages at a super-frontage scale. The report is divided into three sub-sections, with each sub-section dealing with a separate 'super-frontage' (as defined in section F3.1.2). Further details of the baseline scenarios assessment and the figures representing the shoreline evolution of each frontage are in section F3.5 and are referred to specifically in the text.

F3.3.1 Super-frontage 1 (frontages A and B)

Old Hunstanton (frontage A)

This frontage is characterised by a stable bay that has an overall tendency to move towards land. The frontage itself is relatively natural and the beach is a highly active zone. Waves generally approach the frontage from a northerly direction and are then refracted around to a more north westerly direction. On most of the other frontages along the north Norfolk coast, the waves generally approach normal to the frontage. The dominant wave direction across this frontage generates a southward movement of sediment along the frontage towards the cliffs at Old Hunstanton and subsequently into the Wash.

Gore Point provides some shelter from north easterly waves at the north eastern edge of this frontage. Gore Point can therefore be described as a control point.

Under a scenario of WPM, into epochs 2 and 3 the dune line would need replacing with a harder defence line to protect the low-lying area behind. For

a scenario of NAI, the dunes would naturally roll inland. There would be some risk of flooding following overtopping events but this is likely to be short-lived as there is enough sediment to re-seal the gaps in the dunes created during such events.

Detailed assessment tables and figures for frontage A are provided in section F3.6.1.

In terms of interactions with neighbouring frontages, this frontage is not strongly affected by the management practices in frontage B on the wider scale. However, there is the potential for local effects towards the north-eastern edge in the lee of Gore Point.

Holme-next-the-Sea and Thornham (frontage B)

This frontage consists of a barrier system attached to the coast, constrained by a tidal inlet to the east and the natural Wash coastline to the west. The eastern edge of the frontage is flood-dominated, causing any spit-like features to be recurved (or pulled) towards the coast.

WPM for this frontage means controlling flooding in the areas behind the present dune line and sea bank. This scenario therefore assumes that the sea bank remains and that the current natural defence (dune line) is maintained as a viable defence. Under this scenario, the tidal delta to the east would move towards land and towards the west. The eastern 'shoulder' of the frontage would come under increasing pressure. This would eventually lead to the need to continue the hard defences along the frontage towards the west (that is, continuing westward from the current sea banks). This would create a new headland (control point) and would, in turn, increase the need for more defences. The shoreline directly in front of Thornham is not likely to experience any significant changes.

Under a scenario of NAI, the dune ridge along Gore Point would continue to move onshore. The outfall of the River Hun to the north west of Thornham would no longer be maintained and so would take a more natural, meandering, route towards the sea. Failure of this outfall would also cause the harbour channel directly in front of Thornham to silt up. The saltmarsh in front of Thornham would also continue to accrete. The spit-like features that mark the eastern edge of Gore Point would continue to move towards land and would have a tendency to recurve. Following failure of the sea bank to the north west of Thornham during epoch 2, the reclaimed area behind would be opened up and this would tend to reinforce the harbour channel (except for the stretch in front of Thornham which would silt up as discussed earlier). The former reclaimed area would become the River Hun's estuary and would be characterised by a number of small drainage creeks.

Detailed assessment tables and figures for frontage B are provided in section F3.6.2.

Frontage B has been separated from frontage C as it would not be affected by the management options that are available for frontage C. Choice of management in this frontage would have a local effect on the north-eastern edge of frontage A, namely in the lee of Gore Point.

F3.3.2 Super-frontage 2 (frontages C, D, E and F)

Scolt Head Island (frontage D)

This frontage is discussed first within super-frontage 2 because its future evolution, under both scenarios, is largely independent of other frontages. As a result, decisions about management in frontages C and E will not affect how this frontage evolves. However, the future evolution of this frontage will have an effect on how neighbouring frontages evolve, as discussed in the sections below.

Scolt Head Island (frontage D) is the dominating feature in this superfrontage. Scolt is a detached barrier island separated from the 'mainland' by Norton Creek, which empties completely at low tide. The seaward face of the island is characterised by an established dune line.

Currently there are two main processes occurring: rollback of the entire barrier system (including the barrier island and the creek system in its lee) and siltation of Brancaster harbour channel. Sea level rise will bring some uncertainty about the processes occurring and the extent to which these processes will continue to occur in future epochs.

Under a scenario of WPM, in the first two epochs it is predicted that current processes would continue. As a result, the western end of Scolt Head Island would move towards the west and it would continue to have a tendency to move towards land. The eastern edge of the island would continue to try to close the Burnham harbour channel to merge with Gun Hill, but it is unlikely to achieve this. There would also be continued vertical accretion across the saltmarshes in the first two epochs. During epoch 3, there would be increased uncertainty so evolution is likely to follow one of two scenarios. The first potential scenario under WPM is that the Brancaster harbour channel would close up as the western end of Scolt Head moves onshore (so sedimentation increases with sea level rise). Alternatively, there could be more water entering behind the island (as sea level rise outpaces sedimentation) and this would cause a loss of saltmarsh.

Under a scenario of NAI, defence failure in epoch 1 would lead to an increase in tidal prism (the total amount of water that flows in or out of a coastal inlet with the rise and fall of the tide, excluding any freshwater discharges), which will gradually reduce into epoch 2. It is likely that, during this epoch, saltmarsh development (vertical accretion) would continue as with WPM. There would also be continued rollback of Scolt Head and siltation of Brancaster harbour channel as with the WPM scenario. During epoch 2, pressure from tidal flows and sea level rise would cause the western end of Scolt Head to recurve. As with the WPM scenario, the level of uncertainty

increases into epoch 3 under the NAI scenario to such an extent that there are two potential scenarios. The main uncertainty is whether the western end attaches itself to the 'mainland' and this in turn depends on the tidal volume behind Scolt. In an ebb-dominated situation, characterised by an increase in prism and a decrease in saltmarsh, there would be a breakdown of the dune line across the seaward edge of the island, leading to the possibility of a breach and movement of the dune line towards land. Alternatively, under a flood-dominated scenario, there would be continued growth of Scolt Head Island as in epoch 2, leading to the possibility of the western end attaching itself to the 'mainland'. Regardless of which scenario would dominate in epoch 3, the main outcomes under NAI would be movement of the western end of the island towards land and to the west.

Detailed assessment tables and figures for frontage D are provided in section F3.6.4.

Brancaster bay (frontage C)

To the west of Scolt Head Island is Brancaster bay (frontage C). Brancaster bay is a large sweeping sandy bay backed by saltmarsh. The shape of the bay is constrained by a tidal delta at both the western and eastern ends. These tidal deltas act as natural headlands (control points). The eastern tidal delta depends greatly on how frontage D develops. The distinct sweeping shape of the frontage is caused by a combination of these natural headlands and the tidal inlet in the middle of the frontage (to the east of Titchwell RSPB reserve). There are a number of artificial control points, namely at the RSPB reserve at Titchwell and at the Royal West Norfolk golf course.

Currently at the Titchwell RSPB reserve, a scheme of managed realignment is being undertaken to provide more protection to the designated freshwater lagoon behind the frontline defence. This realignment is attempting to move the current defences away from interactions with the tidal inlet in the middle of Brancaster bay. Under a scenario of WPM, the new north-eastern corner of the reserve (where the east wall ties in with the Parrinder wall) is likely to start interacting with the natural processes occurring in the tidal delta by epoch 3. This would mean significant work to the defence to maintain the standard of protection. The Royal West Norfolk clubhouse would also become a promontory under a WPM scenario, but as it does, it may become a more 'natural' feature within the realigned coast. In summary, the general bay shape of this frontage would be maintained under a scenario of WPM, with artificial control points being created at the north-eastern corner of the Titchwell RSPB reserve and at the Royal West Norfolk clubhouse.

Under a scenario of NAI, the Royal West Norfolk golf course would become a potential natural control point as it interacts with the western end of Scolt Head Island. This is obviously linked to whether a flood- or ebb-dominated situation occurs. The general bay shape of the frontage would also be maintained, but it is uncertain exactly how it might develop under NAI.

There are detailed assessment tables and figures for frontage C in section F3.6.3.

The management of this frontage depends greatly on the decisions made about managing Scolt Head Island (frontage D). In the 'worst case' long-term scenario, an ebb-dominated system (that is, increase in tidal prism and decrease in saltmarsh) in frontage D under the NAI scenario would mean that the Brancaster harbour channel would be pushed towards land, exposing the Royal West Norfolk golf course to increased pressure from tidal flow. The 'best-case' long-term scenario would be if the management policy in frontage D was NAI. This would either be caused by the western end of the island attaching itself to the 'mainland' or by accretion of the saltmarsh behind the island increasing so much that the Brancaster harbour channel weakens, causing extensive growth of saltmarsh. This could be brought about by a NAI scenario that would lead to a flood-dominated system. So, although a policy of NAI in frontage D would benefit frontage C, it could lead to an ebbdominated system and so cause increased exposure of the golf course.

The management of this frontage itself does not affect the neighbouring frontage (frontage B to the west). This is why there is a significant management 'break' to the west of Brancaster bay, meaning that both frontages A and B form a separate 'super-frontage'.

Holkham bay (frontage E)

To the eastern side of Scolt Head Island is Holkham bay. As with Brancaster bay (to the west of Scolt Head), this frontage is characterised by a stable bay that is constrained both to the west and the east by a tidal delta. There is also a former tidal delta, roughly in the middle of this frontage, known as Holkham Gap. The frontage is an open coast frontage, with a line of healthy dunes stretching along its entire length. Behind the dune line is an area of low-lying land that ties in with higher ground roughly along the line of the A149. The dunes along the frontage have a natural tendency to roll back but they are currently constrained by heavy vegetation (fir trees). This line of fir trees, known locally as the Holkham Meols, still allows erosion of the front face of the dunes but does not allow dune development at the back face. The result of this is that rollback is constrained. Presently there seems to be a significant volume of sediment along this frontage, but recent Environment Agency profiles have shown erosion of the front face of the dunes at some locations. Holkham Gap, the tidal delta in the middle of the frontage, has a natural tendency to silt up and therefore seal and subsequently roll inland.

The evolution of this frontage is closely linked to frontage D so is best described in relation to possible management practices and their consequences in this neighbouring frontage.

Under the WPM scenario in frontage D, there is likely to be increased erosion of the western edge of the bay in epoch 2. Along the open coast (most of this frontage) however, there are likely to be limited effects.

Under a scenario of NAI in frontages D and E, the defences at the western edge of frontage E would fail first (in epoch 1). There would be a general increase in tidal prism behind Scolt Head Island and to the west of frontage E, near Gun Hill, by epoch 3. It is likely that the tidal delta at Gun Hill would also move towards the west. To the east of the frontage, following defence failure in epoch 2, the Wells harbour channel would take a more natural course and would meander out to sea. Both consequences of defence failure would, however, only be expected to cause local effects. Defence failure would also cause flooding behind the dune line in the areas of reclaimed land (Overy marshes for example).

Detailed assessment tables and figures for frontage E are provided in section F3.6.5.

The management of frontage D is key to how this frontage develops. There is, however, great uncertainty as to how this frontage is likely to react in line with the uncertainty over the development of frontage D itself.

Warham and Stiffkey marshes (frontage F)

This frontage is typically open coast with mudflat turning into established saltmarsh, which ties in with higher ground. There are typically no complex interactions with neighbouring frontages (E and G). As a result, this frontage could be treated as an independent 'super-frontage' at a later stage. Under both NAI and WPM scenarios in this frontage, there would be continued saltmarsh and mudflat accretion (both vertically and horizontally) during epoch 1. Into epoch 2, sediment accretion is likely to be outpaced by sea level rise and the trend of accretion could switch to erosion. This would cause erosion of the saltmarsh/mudflat boundary, leading to an overall decrease in the total area of saltmarsh.

Detailed assessment tables and figures for frontage F are provided in section F3.6.6.

F3.3.3 Super-frontage 3 (frontages G and H)

Blakeney Point (frontage G)

Blakeney Point is a spit, orientated towards the west north west. It is attached to the mainland at Blakeney Eye (eastern edge of the frontage). Generally, the active section of the spit is within this frontage. The spit's distal end (the end of the spit that is furthest from the point of attachment) is characterised by a number of recurves, indicating the former extent of the spit.

The future development of Blakeney Spit depends to some degree on management actions in frontage H. Under a scenario of WPM, the flushing of the Blakeney and Cley fresh marshes (increasing in later epochs) on the ebb tide (following overtopping of the shingle ridge during a storm event) in frontage H would tend to reinforce the low water channel. As a result, the channel would become ebb-dominant. This ebb-dominated situation would tend to cause saltmarsh erosion. Into later epochs, with the same WPM approach in frontage H, water would tend to drain directly seaward back over the failed shingle barrier, instead of draining out through the River Glaven and Blakeney channel on the ebb tide. Actions would be needed in frontage H to ensure that the current fresh marshes are kept free of significant saline intrusion. However, the type and extent of 'with present management' is not clear at this stage.

The spit would continue to grow towards the west during epochs 1 and 2. Into epoch 3 it is likely to start showing significant signs of recurving and retreat as the saltmarshes experience continued sedimentation and eventually close the Blakeney harbour channel. This will only happen if the River Glaven is allowed to take a natural course directly through the shingle ridge. This provides an uncertainty and depends on the continued management of the fresh marshes. Alternatively, Stiffkey marshes could become more exposed into epoch 3 with sea level rise.

Under a scenario of NAI, there would be reinforced tidal flow behind the spit following failure of the sea banks, causing the marshes to become saline as opposed to freshwater habitats. The increased tidal prism would move the spit in a westward direction and the entire system would continue to move towards land. This would affect the development of the marshes in the lee of the spit. There is also more uncertainty about the spit itself. If siltation does not keep pace with sea level rise, it may not continue to grow. It may instead thin out with breaches occurring along the length of the spit.

Detailed assessment tables and figures for frontage G are provided in section F3.6.7.

Cley to Salthouse shingle ridge (frontage H)

As discussed in the previous section, WPM along this frontage assumes NAI along the ridge to keep it as a Natura 2000 site, but with management of the freshwater marshes (that is, continued pumping). It has also been assumed that the current freshwater marshes will be kept as they are now for all epochs.

Under a scenario of WPM, the shingle ridge would have a tendency to flatten and, due to lack of sediment supply, its previous height and profile would not be reinstated. This would lead to regular flooding and to a situation where the freshwater marshes would be permanently inundated. In this situation, saline water would be exchanged across the failed shingle ridge line on the flood and ebb tide. This would create an overwash system. It is likely, in this situation, that the current sea banks and pumping facilities would be abandoned as they would no longer be effective.

Under a scenario of NAI (assuming NAI in frontage G), water would preferentially drain out behind the spit, reinforcing Blakeney channel.

Because of uncertainties about how both frontages (G and H) may develop, it is vital they are considered as one when deciding future management options. The preferred management policy for both frontages is likely to depend greatly on decisions made about the maintenance of the fresh marshes.

Detailed assessment tables and figures for frontage H are provided in section F3.6.8.

F3.3.4 Summary

The following sections provide a simplified overview of the geomorphological interactions within each super-frontage.

- Super-frontage 1 (frontages A and B):
 - Local interactions only between the north-eastern edge of frontage A and the south-western edge of frontage B (near Gore Point)
- Super-frontage 2 (frontages C, D, E and F):
 - Scolt Head Island is the dominant feature
 - Management of Scolt Head Island (frontage D) will have a large effect on decisions about managing frontages C and E
 - Frontage F (Warham and Stiffkey marshes) is a typical open coast and is not greatly affected how the neighbouring frontage (E) is managed. Frontage F could therefore be classed as a separate 'super-frontage'
- Super-frontage 3 (frontage G and H):
 - The intent and extent of continued management of the fresh marshes in frontage H will have a large effect on management of both frontages G and H
 - The sustainability of the fresh marshes needs to be assessed before making decisions about managing frontages G and H

F3.4 Overall conclusions

F3.4.1 No active intervention

Under a scenario of NAI, it is likely that the main process that would occur along the north Norfolk coastline is the restoration of the large expanses of reclaimed saltmarsh back to their natural state. This is not likely to occur until the end of epoch 1 in most cases because of the predicted timing of defence failure discussed in section F2. Following initial inundation of these former reclaimed areas, there would be a considerable increase in tidal exchange there and this would significantly change the sediment transport patterns of each individual unit. There is unlikely to be any widespread flooding of individual towns and villages, with damages being confined to water-edge development and some agricultural land (grades 2 to 4). The main effect of a scenario of NAI would be that a number of the small harbours may silt up (due to lack of maintenance) or water depths and flows may become too strong to allow safe mooring of boats. In this situation the effect on the town/village and surrounding area would be large, due to the loss of revenue provided by tourism and the potential that the area is no longer desirable for second home owners.

F3.4.2 With present management

Under the WPM scenario, there is still likely to be more water entering the sheltered areas behind the various spit/barrier features as a result of sea level rise, but this will be constrained by the defences, gradually creating a form of coastal squeeze. There would also be increased pressure on the defences due to rising sea levels, which would increase the need for regular maintenance and inspections of the structures. This process will also change the geomorphological processes involved in forming the various depositional features.

F3.5 References

Defra, 2006, Flood and Coastal Defence Appraisal Guidance FCDPAG3 Economic Appraisal – Supplementary note to operating authorities – climate change impacts

EA SMG (Environment Agency Shoreline Management Group), 2007, Anglian Coastal Monitoring Programme: Coastal Trends Analysis – North Norfolk

HR Wallingford, 2002, Cromer Coastal Strategy Study Final Report (Report EX 4363)

HR Wallingford and Royal Haskoning, 2002, Southern North Sea Longshore Sediment Transport Study

Royal Haskoning, 2003, North Norfolk Coast Coastal Habitat Management Plan Final Report

Mouchel, 1996, North Norfolk Shoreline Management Plan 1

F3.6 Frontage tables

Frontage tables are provided below.

F3.6.1 Frontage A – Old Hunstanton

Frontage	A – Old Hunstanton	Chainage	<mark>0</mark> km	2.2km
Start of du	ines at Old Hunstanton (western boundary of SMP study area) to (Gore Point		
Section 1	– Description			
General	This frontage contains the village of Old Hunstanton, which is see and small pitch and putt golf course. To the north east of Old Hun Way and Norfolk coast path running through it.			
Physical	This frontage is characterised by successive lines of shingle and running in a south west to north east direction. The oldest dune ri the landward edge and the newest at the seaward edge. The old form the Hunstanton golf course. The newest dunes are generally gabion basket groynes.	dges are at er dune ridge	y y	A Holme Holme next the Sea
	To the south west of the frontage are Hunstanton cliffs, which gra inland in a north-easterly direction up to the beginning of this from they are no longer visible.	•	sh Old Hunsta ANTON	Norman Barrier Science
	At low water there is a significant width of sandy beach exposed metres). At high water this beach is covered up to the seaward en- groynes.	•		
	Offshore there is a large sand bank, consisting of Sunk Sand and frontage. The bank is generally exposed at low water.	I Silver Sand	, located aro	und 3.5 kilometres from the

Frontage	A – Old Hunstanton	Chainage	<mark>0</mark> km	2.2km
Defenc				
es	The whole frontage is protected by lines of natural vegetated sa	nd dunes. The	ere are aroun	d 35 gabion groynes that
and	stabilise the beach in front of the newest dune line.			
man-				
made				
features				

Tide and water		LAT	MLWS	MLWN	MSL	MHWN	MHWS	HAT	Sprin	g range	Neap range	Correc CD/OE	DN
evels (M ODN)	Hunstanton	N/A	-2.85	-1.25	N/A	1.85	3.65	N/A	6.50m	1	3.10m	CD is 3 metres OD	
		Source/method 1:1 1:							1:50	1:100	1:200	1:500	1:100
(MODN)	Hunstanton		Haskoning			4.73	1:10 5.24	1:25 5.45	5.60	5.76	5.91	6.11	6.27
	Notes:												
Currents			Notes										
	Av. flood N	lorth	Currer	nt data dedu	ced from	n tidal diam	ond Q on A	Admiralty	/ chart r	no. 108.			
	Av. ebb S	outh	The flo	w pattern o	ver muc	h of the risi	ng tide is r	elatively	weak o	ver mid-ti	de and to	wards tl	he
	Av. ebbSouthThe flow pattern over much of the rising tide is relatively weak over mid-tide and towards the south, changing to a weak flow over high water towards the north. On the ebb, the flow is generally towards the north, but reverses to a strong flow towards the south over low water, flowing into the ebb tide from the Wash.												

climate	coast from	differe	ent directio	ons (nor	th to no	orth wes	t). Alona thi	s frontao	le waves t	typically	originate from	n 30°N. The annual 10
	coast from different directions (north to north west). Along this frontage waves typically originate from 30°N. The annual 10 per cent exceedance significant wave height is between 1.0 and 1.5 metres (Futurecoast 2002). The 1:100 year wave											
Accretion/							Anglian Wa					
erosion	Notes: Erosion has been a problem along this entire frontage, with the sand dunes being protected by gabions and groynes to try to slow the loss of material southwards and to stabilise the position of the shoreline.											
							Intertidal			Nearshore		
	Location		general	crest	face	toe	cackshore	Mean	MHWS	MLWS	Trend	Source
	Average o profiles N1 and N1D5							1.81	2.80	1.00	Accretion	EA Coastal Trends Analysis (2007)
Sediment	Overview: The north Norfolk sediment budget is positive and sediment is currently available to the coastal system. General movement along this frontage is into the Wash.											
	Material											
	Sources	Exter	nal: Ero	osion of osion of	Holder	ness cli	ffs (fine).	ne). Internal: N orfolk coast ((()		ecycling of int coarse). offshore bank	abed, cliff erosion and ertidal sediments s (during high v frequency events).	
	Movemen	t: Sed	liment trar	sport is	toward	ls the w	est Locat	ion	Net drift			Source
	during low involving r						Wash entrar		14.00 (se	outh wes	stward)	Ke et al. (1996)
	There are	seasor	nal reversa	als in thi	s direct	tion (Ev	ans Wash		12.44 (southward)			HR Wallingford

et al 1998). During high energy surge conditions	entrance	(1998)
there may be a sudden change in patterns of		
sediment movement, with material from the		
Burnham Flats being transported. This leads to		
changes in normal sediment pathways and delivery		
and moves significant amounts of sediment during		
single events (HR Wallingford 2002).		

¹ The rates highlighted in bold are those used when determining NAI and WPM baseline scenarios (section 4).

Frontage A – O	Id Hunstanton Chainage 0km 2.2km						
Section 3 - Geo Process description: Overall description of current processes: sources, transport and sinks	morphology It has been suggested that the north eastward orientation of the shingle and sand ridges is related to their position in the mouth of the Wash. The past erosion has been more significant than over the neighbouring frontage (frontage B) to the north east. The frontage therefore tends to form a slowly eroding embayment. The greater resilience of the frontage to the north east has not been examined in previous reports but seems to be associated with local nearshore features, namely the Norfolk Banks and the Burnham Flats. These features consist of sand and may provide limited sediment during low-frequency high-magnitude events.						
Patterns of change	Past development: In the past, there has been erosion along this frontage. As a result the upper beach has been stabilised using gabion groynes.						
	Recent trends: Recent EA monitoring data suggest that the groynes are acting to stabilise the upper beach profile. This frontage is now, therefore, experiencing accretion at average rates of 1.81 metres a year.						
	Future evolution (unconstrained): Removing the defences along this frontage is likely to lead to the onset of erosion, as noted in the past. This would release some sediment to the Hunstanton-Heacham frontage, which may provide some increased protection there. However, most is likely to be moved offshore where it will be stored as a sediment sink. This process would have a detrimental effect on the sand dunes in front of Old Hunstanton and the Hunstanton golf course.						

Frontage A – O	Id Hunstanton		Chainage	0 km 2	.2 km				
Dependency: Factors	Control and sensitivities	<u>Control</u> features	Significance	Dependence	<u>Chainage</u>				
affecting the evolution of	The slight embayment is anchored by the cliffs to the south but, in a potentially more	Gabion groynes	Secondary	Human intervention	0 to 2.2km				
the frontage both internally and externally	transient manner, by the dunes to the north east. The behaviour of frontage B is critcial	Hunstanton cliffs	Primary	Fixed	Outside study area				
	to that of frontage A. The frontage is very sensitive to continued sediment supply. The groynes act at present to hold the shore.								
	Internal interaction	External int	External interaction						
		Continued use of defences along this frontage acts to pin the shoreline in position, while the neighbouring frontage (B) around Gore Point is free to realign.							
	Sea level / climate change For recent Defra (2006) guidance on sea level rise due to climate change - see section 1.4 in the main report.								
Influence: Factors that may influence evolution of other areas	If management of this frontage is abandoned, there would be a minor release of sediment. Alternatively, if management continues, this would hold the shoreline in a relatively unnatural position, with the neighbouring frontage (B) being free to realign. This could lead to an increased potential for catastrophic failure of the sand dunes at the north eastern edge of the frontage, particularly during extreme events.								

Frontage	A – Old	Hunstanton

Chainage: 0km

2.2**km**

Section 4 – Baseline management scenarios^{2,3}

No active Scenario description

intervention This scenario assumes that defences are no longer maintained and will therefore fail over time. Exact timing of defence failure cannot be deduced, but an epoch of failure can be determined, as shown in the 'Assessment of coastal defences' report.

Shoreline response

Under a scenario of NAI, over 90 per cent of the groynes along this frontage are expected to fail by the end of epoch 1, with the remaining groynes failing by the end of epoch 2.

Initially, while the defences remain intact, they will continue to hold the shoreline where it is now. There is likely to be continued accretion across the whole profile at rates of around 1.81 metres a year. Following failure of most of the groynes towards the end of epoch 1 and beginning of epoch 2, there is likely to be quite rapid rollback and realignment of the shoreline. The shoreline would take on a more natural position and would form a slight embayment as it is anchored to the south by the slowly-eroding cliffs and to the north by Gore Point. However, if NAI was applied to frontage B, anchoring of the northern end of frontage A is unlikely to be as significant. As the dunes roll back they would react to the rising sea level by forming increased crest heights and wider profiles. These natural dunes would obviously be susceptible to overtopping during extreme events.

For epochs 1, 2 and 3, pressure for erosion is likely to be in terms of rollback with sea level rise, with continued supply from frontage B. Rates of erosion might be expected to be directly associated with the rate of sea level rise and beach slope. The following table calculates the erosion rate by multiplying the rate of sea level rise by the

² All management scenarios assume that the current management practices undertaken in adjacent SMP study areas will continue. The potential effect of wind farms offshore of this study frontage has been noted. However, within this assessment of baseline scenarios, it has not been considered relevant to quantify these effects due to the uncertainty surrounding this issue.

³ All assessments of shoreline response have a band of uncertainty that increases for later epochs.

Epoch	Sea level rise (myr ⁻¹)	Beach slope	Erosion rate (myr ⁻¹)
1 (2008 to 2025)	0.004	1:20	0.08
2 (2025 to 2055)	0.0085	1:20	0.17
3 (2055 to 2085)	0.012	1:20	0.24
3 (2085 to 2105)	0.015	1:20	0.30

If at any time during epochs 2 and 3 there is any constraint (natural or man-made) on the natural progression of the dune line towards land, there would be oversteepening of the seaward face of the dune and a risk of breakdown of the dune function as a natural defence. In this situation there would be flooding of the backshore area and it is likely that it would gradually make the progression to natural saltmarsh.

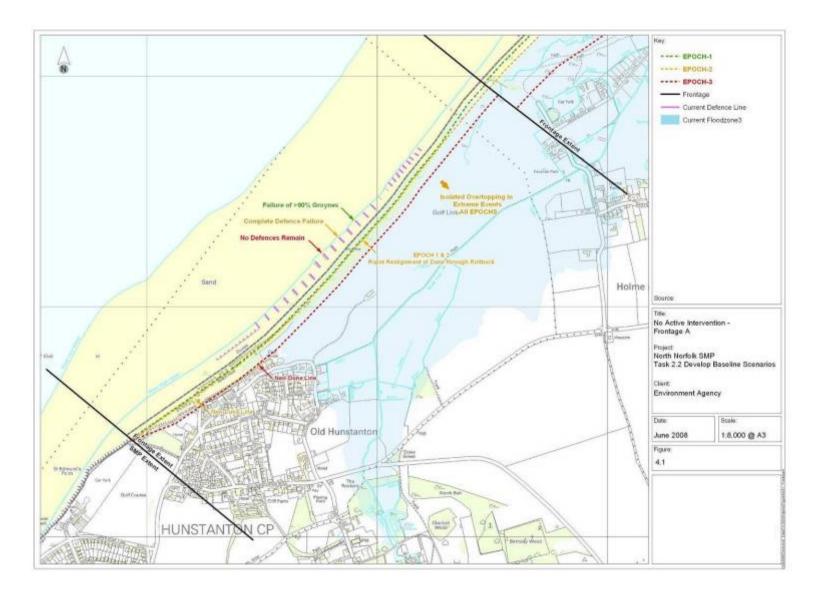
Epoch 1: Ye	ears 0 to 20 (2025)	Epoch 2: Yea	rs 20 to 50 (2055)	Epoch 3: Years 50 to 100 (2105)	
Defences Natural coast		Defences	Natural coast	Defences	Natural coast
Failure of over 90 per cent of the groynes.	The natural coast would remain in the same "unnatural" position, but the upper foreshore is likely to continue to accrete.	Complete defence failure. The natural dune line will provide some protection.	Wide-scale realignment of the dune line with breach/ overtopping during extreme events. Frontage will begin to shape into a slight embayment, fixed to the south by the cliffs.	Complete defence failure. The natural dune line will continue to provide some protection.	Same as epoch 2. Dune line will become in balance with the natural processes. Continued flooding of the backshore during extreme events.

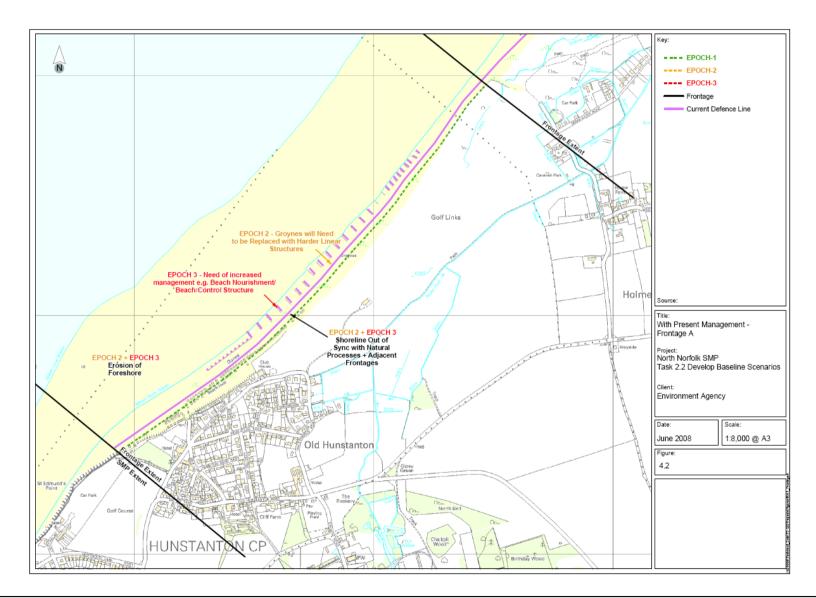
With present Scenario description

beach slope (a simplification of the Brunn rule):

management (WPM) This scenario assumes that the current policy of hold the line for the frontage continues. This will usually involve maintaining defences to provide a similar level of protection to that provided at present and regularly inspecting and maintaining the defences.

Shoreline response


Under a scenario of WPM, during epoch 1 the gabion basket groynes would effectively continue to pin this part of the shoreline in position. In contrast, the neighbouring frontage (frontage B) would be free to realign. As a result, the shoreline across this frontage would become increasingly out of line with neighbouring frontages. This will increase pressure on the northern end of the frontage with a need for more protection and management. This is despite accretion trends being recorded recently from EA monitoring results. In epoch 1 accretion is still likely to occur.


In epoch 2 there would potentially be a change from accretion to erosion along the foreshore. There would also be the increasing need for groynes to be replaced with harder beach control structures, such as linear defences, to reduce the risk of flooding to the backshore areas. However, if this defence replacement was undertaken, the shoreline would be increasingly out of balance with the natural behaviour and it is likely that there would be some erosion in front of the defences, with the possibility of lowering beach levels and undermining of the defences.

Into epoch 3, the new hard linear defences would need to be continually maintained and improved to provide an increased standard of protection. There may be the need for other management options, such as beach renourishment with associated beach control structures.

Epoch 1: `	Years 0 to 20 (2025)	Epoch 2: Yea	rs 20 to 50 (2055)	Epoch 3: Years 50 to 100 (2105		
Defences Natural coast		atural coast Defences Natural coast		Defences	Natural coast	
Defences will remain.	Same as epoch 1 NAI: The natural coast would remain in the same "unnatural" position, but the upper foreshore is likely to	Defences will remain, but gabion groynes are likely to be replaced with hard linear	Erosion, as opposed to accretion, would be experienced along the foreshore. Shoreline would be increasingly out of line with neighbouring	Hard linear defences may need to be accompanied by other beach management options such as beach nourishment and beach control	Increased erosion of the foreshore and lowering of beach levels.	

	continue to accrete.	defences.	frontages.	structures.	

F3.6.2 Frontage B – Holme-next-the-Sea and Thornham

Frontage I	B – Holme-next-the-Sea and Thornham Chainag	e 2.2km	8.2km								
North-east	North-eastern limit of Hunstanton golf course to western end of Brancaster bay (just to the east of Thornham).										
Section 1 -	- Description										
General	This frontage contains the villages of Holme-next-the-Sea and Thornham content Near Holme there is a dune ridge system similar to that found along frontage there are extensive saltmarshes separated from the reclaimed Holme mars harbour channel.	e A. Toward	Is the east around Thornham								
Physical	The extensive (around 250 hectares) saltmarshes of the Thornham area are separated from the reclaimed Holme marshes by an embankment along the Thornham harbour channel. The tidal discharge from the harbour channel (not constrained by training walls) has resulted in a large tidal delta whose ramparts form a dune ridge enclosing Thornham marshes (to the east of the frontage) and Holme dunes (to the west). This tidal delta forms Gore Point, which acts as a barrier island similar to Scolt Head Island but more closely attached to the shore. There is a smaller tidal inlet at the western side of Gore Point. This cuts through the dune ridge, forming a slight discontinuity in the dunes. This small inlet tends to hold the western end of Gore Point slightly out to sea. Although still within the overall low-lying area of the River Hun, there appears to be a slig Holme. The barrier dunes are recurved only at the eastern end, giving som outfall of the River Hun. The River Hun discharges into the saltmarsh along	Old Hunstanto ANTON ANTO	igher ground running north from the embankment and fixed								

Frontage B	- Holme-next-the-Sea and Thornham	Chainage	2.2km	8.2km
Defences and man- made features	Near Holme and across Gore Point there are no formal man-m Holme Dunes Nature Reserve the dunes have limited soft prote consists of timber boards and brushwood fencing (faggotting). is replaced by a vegetated sea bank that protects Thornham fre	ection on their To the east of	seaward face	e. This soft protection

Frontage B	ntage B – Holme-next-the-Sea and Thornham							Chainage 2.2km 8.2km					
Section 2 –	Baseline info	ormation	(cur	rent data rele	evant to the	e fronta	ge)						
Tide and water levels (mODN)			LAT	MLWS	MLWN	MSL	MHWN		MHWS	НАТ	Spring range	Neap range	Correction CD/ODN
	Hunstanton N/A		N/A	-2.85	-1.25	N/A	1.85		3.65	N/A	6.50m	3.10m	CD is 3.75 metres below OD
Extremes			Sou	rce/method		1:1	1:10	1:25	1:50	1:100	1:200	1:500	1:1000
(mODN)	Holme-next-the- Roy Sea			oyal Haskoning 2007		4.46	4.99	5.20	5.36	5.52	5.68	5.89	6.04
	Notes:												
		Notes											
Currents	Av. flood	South		Current data deduced from tidal diamond K on Admiralty chart no.108 – note significantly									
	Av. ebb	North	east				•		s relatively strong over mid-tide and towards				
	Net residual	North		south, changi generally stro	water	towards	the nort	th. On the	e ebb, th	e flow is			
Wave climate	coast from on 10 per cent	The dominant waves arrive from the north east and north north east, but refraction causes the waves to approach the coast from different directions (north to north west). Along this frontage waves typically originate from 30°N. The annual 10 per cent exceedance significant wave height is between one and 1.5 metres (Futurecoast 2002). The 1:100 year wave height offshore is between six and eight metres (Anglian Water 1988).											

Frontage B	– Holme-next-the-Sea a	nd Thorn	ham				Ch	ainage	2.2km	8.2km	
Section 2 – I	Baseline information (c	urrent dat	ta relev	ant to	the fr	ontage)					
Accretion/ erosion	Notes: In the area known locally as the Firs, recession rates of up to eight metres were recorded between 1988 and 1993. Accretion in Thornham harbour has also been noted between 1966 and 1994 aerial photographs. Between 1992 and 2001, EA data show that around 100,000m ³ a year of sediment was lost from this frontage. Between Holme and Blakeney, Futurecoast (Halcrow 2002) notes that the coastline is typically accreting.										
	Average rates (myr ⁻¹ unless stated) ⁴	Cliff/backshore feature			Intertidal				Nearshore		
	Location	general	crest	face	toe	backshore	mean	MHWS	MLWS	trend	Source
	Average of EA profiles N1D7 to N1C3						-1.87	-1.59	-1.89	Erosion	EA Coastal Trends Analysis (2007)
Sediment	Fine-grained Sources External: E E	er san arshe s (fine	d flats, barrie s and associa	r beaches	s and sar flats). Nearsho recyclin	nd dunes) ore seabe g of inter		on and hts (coarse).			
	(fine). Movement: There is a westward sediment transport pathway along the north Norfolk coast during low magnitude, high frequency events involving relatively small volumes of sediment.					ocation Ne	et drift (n	low freq n ³ /yr x 10	uency ev 100) So		

⁴ The rates highlighted in bold are those used when determining NAI and WPM baseline scenarios (section 4).

Frontage B – Holme-next-the-Sea and Thornham	Chainage	2.2km	8.2km
Section 2 – Baseline information (current data relevant to the frontage)			
There are seasonal reversals in this direction			
(Evans et al 1998). During high energy surge			
conditions there may be a sudden increase in			
patterns of sediment movement, with material			
from Burnham Flats being transported. This			
leads to changes in normal sediment pathways			
and delivery and acts to move large amounts of			
sediment during single events (HR Wallingford			
2002).			

Frontage	B – Ho	Ime-next-the-	-Sea and	Thornham

Section 3 - Geomorphology

Process description: Overall description of current	The area between Thornham and Hunstanton golf course is very similar to the features between Wells harbour and Scolt Head Island (frontage E). However, the features indicate a less fully-developed stage compared to the Wells-Scolt Head Island unit. This frontage is mainly fronted by natural dunes set out in parallel ridges up to 100 metres back from the shoreline. Waves from the west play a role as this area is exposed to locally-generated waves from the Wash as well as the north east-south west orientated tidal system.
processes: sources, transport and sinks	There is a wave-modified ebb tidal delta caused by discharge from Thornham harbour channel. This is accreting north of the tidal inlet at Thornham. This tidal delta acts as a sediment sink where local sediment convergence and circulation occurs to form offshore bars and dune ridges. These enclose Thornham marshes on the east and Holme dunes on the west. Tidal deltas occur where discharges from tidal inlets cause the longshore pathway of sediment to be pushed seaward and become intermittent. This creates a pronounced lobe in the lower intertidal that causes a decrease in energy at the upper shore and formation of sand dunes. There is also a smaller tidal delta at Gore Point, towards the west of the frontage. Gore Point is thought to be a relatively stable feature (Leggett et al 1998; Schong et al 2001).
	Between Holme-next-the-Sea and the outfall of Thornham harbour channel there is about 84 hectares of reclaimed marsh. These 'grazing marshes' are very susceptible and fragile habitats. There are a couple of significant offshore features along this frontage, the Norfolk Banks and the Burnham Flats, consisting of sand. These will act as a significant source of sediment during high energy surge conditions.
Patterns of change	Past development: The saltmarshes have accreted vertically in pace with sea level rise since the mid-Holocene. Erosion is a problem in the area known as the Firs where, between 1988 and 1993, recession rates of up to eight metres were
	recorded. Gore Point has also eroded from the eastern end near the drainage channels for Holme marsh. This is balanced to an extent by accretion in the Thornham harbour area noted in comparisons between 1966 and 1994.

Chainage 2.2km

8.2km

Frontage B – H	olme-next-the-Sea and Thornham		Chainage	2.2km 8.2km			
	Recent trends: The sand dunes in front of the Holme I released sand carried eastwards (Futu Future evolution (unconstrained): To the west of Thornham harbour the i alignment, but the lack of mobile mater Firs is likely to continue to erode at the unconstrained scenario, the tidal delta the west.	recoast 2002). The mmature sand bars rial is expected to h present rate as the	EA has noted t s are likely to co hinder this proce ere is very little p	his erosion during recent r ntinue to try to move to the ss. The area around Gore protection for the area. Un	nonitoring. e swash Point and the der an		
Dependency: Factors	Control and sensitivities	Control features	Significance	Dependence	Chainage		
affecting the evolution of	Locally-generated waves from the Wash.	Holme marsh tidal inlet	Secondary	Transient			
the frontage both	Sea level rise – will tend to cause rollback of the frontage. Existence of tidal inlet discharge.	Thornham/Hun tidal channels	Secondary	Subject to change with sea level rise and enclosure			
internally and externally		Burham Flats	Primary	Change due SLR			
	Internal interaction	External interaction					
	Continued sea level rise will cause an increase in the depth of water over the Burnham Flats, which could mean that the focus of wave energy changes.	There is a feed of sediment from the frontage to the east. The frontage depends on feed from the offshore areas.					
	The tidal prism of the various inlets,						

Frontage B – F	Iolme-next-the-Sea and Thornham	Chainage 2.2km	8.2km
	and particularly as a result of inundation of the Hun river flood area, would significantly alter the control this imposes on the coast.		
	Sea level / climate change For recent Defra (2006) guidance on sea level r	se due to climate change, see secti	ion 1.4 in the main report.
Influence: Factors that may	Rollback of Gore Point may cause a change in of frontage may weaken the supply to the east, wit		
influence evolution of			
other areas			

Frontage B – Holme-next-the-Sea and Thornham

8.2km CHAINAGE: 2.2km

Section 4 – Baseline management scenarios^{5,6}

Scenario description No active

intervention (NAI)

This scenario assumes that defences are no longer maintained and will therefore fail over time. Exact timing of defence failure cannot be deduced, but an epoch of failure can be determined, as described in the 'Assessment of coastal defences' report.

Shoreline response

Under a scenario of NAI there would be continued erosion along the frontage at rates of about 1.87 metres a year. Dunes parallel to the barriers on the open coast are likely roll back with the potential for overwash fans moving residual beach sediment over the reclaimed marshes. In the long term, these could provide the foundation for new dunes, depending on the availability of sediment. If formed, these new dunes are likely to be big enough to act as a natural coastal defence in the future. The whole system would roll back and there would be continued vertical accretion across the natural saltmarsh areas within the barrier of the dunes. Most of the defences are likely to have failed by the end of epoch 1, at which point there would be some realignment of the previously-fixed coastline and flooding of the areas behind the defences on high tides. This would eventually lead to a reinstatement of the reclaimed saltmarsh back to natural saltmarsh, as they are at a lower level and would promote ponding. This rapid realignment would tend to have a major effect on the system as it re-establishes itself to an initial increase in tidal volume. The saltmarsh area would tend to act as a sediment sink initially. The general retreat would have an effect on frontage A as this frontage would provide less of an anchor to the north of it.

Under this scenario there would be a failure of the River Hun tidal outfall sluice. In this situation, the river outfall would take a more natural route over the saltmarsh and it is likely to move towards the west.

⁵ All management scenarios assume that the current management practices undertaken in neighbouring SMP areas will continue. The potential effect of wind farms offshore of this study frontage has been noted. However, in this assessment of baseline scenarios it has not been considered relevant to quantify these effects due to the uncertainty surrounding this issue.

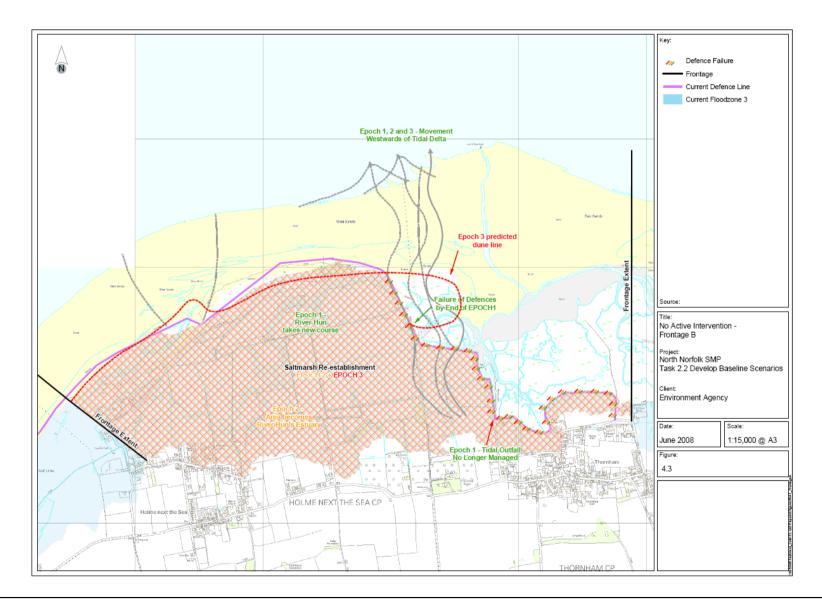
All assessments of shoreline response have a band of uncertainty that increases for later epochs.

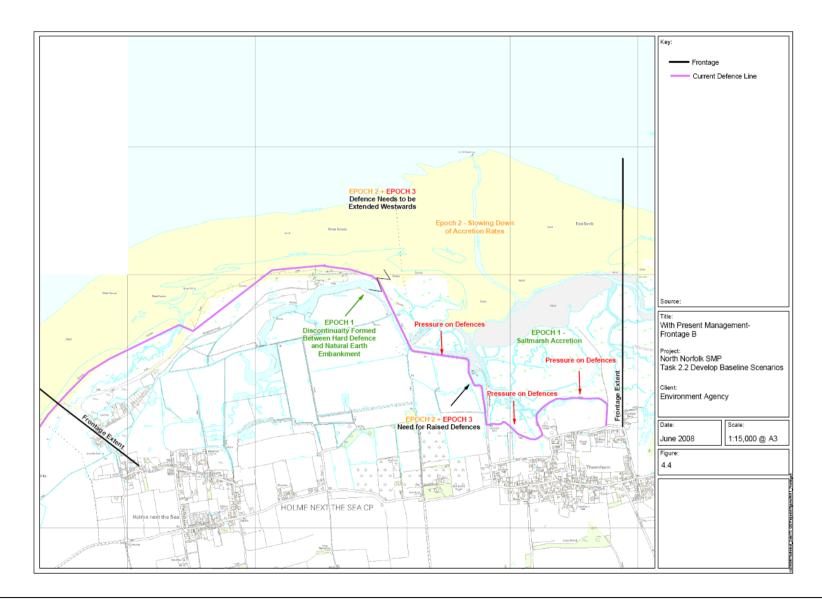
Epoch 1: Years 0 to 20 (2025)		Epoch 2:	/ears 20 to 50	Epoch 3: Ye (2105)	Pears 50 to 100 Natural coast Same as epoch 2. Continued westward movement of the tidal delta. Saltmarsh would continue to develop	
Defences	Natural coast	Defences	Natural coast	Defences	Natural coast	
Most of the earth embankments and the tidal outfall of the River Hun would fail by the end of epoch 1.	Continued erosion along the frontage with overwashing of the dunes and subsequent rollback. Following defence failure, the previously-fixed coastline would realign, with flooding of the previously-reclaimed areas. Defence failure would have a major effect on the geomorphological system.	Complete defence failure.	Tidal delta would move towards the west as it is unconstrained. Backshore areas would begin to develop into natural saltmarsh. There would be continued rollback of the natural dune line.	Complete defence failure.	2. Continued westward movement of the tidal delta. Saltmarsh would	

With present Scenario description

management (WPM) This scenario assumes that defences are maintained and improved to provide a similar level of protection to that provided now. This management is aimed at defending the area behind (reclaimed land) from flooding. This will involve regularly inspecting and maintaining defences. The natural dune frontages are assumed to roll back with no intervention.

Shoreline response


In epoch 1 under a scenario of WPM, there would be similar shore development to that described in epoch 1 under the NAI scenario. As a result, erosion would continue along the foreshore at rates of around 1.87 metres a year. Dunes parallel to the barriers on the open coast are likely to roll back with the potential for overwash fans to move residual beach sediment over the reclaimed marshes. The whole system would roll back and vertical accretion is likely to continue across the natural saltmarsh areas within the barrier of the dunes.


Into epoch 2, the continued rollback of the dunes parallel to the barriers on the open coast would create a greater interaction between the dunes and the fixed earth embankments. At this interface there is likely to be a weakness in the natural interface with increased risk of failure. In epoch 2 there would therefore be a need to extend the current earth embankment towards the west following the current dune line. In epoch 2 it is also likely that vertical accretion of the saltmarsh areas may reduce or even change to erosion. As a result, in front of the fixed earth embankments there would be a squeeze of the current tidal delta between the rising sea level and the fixed earth embankment. This squeeze would in turn increase the likelihood of overtopping and cause ponding of water on the lower reclaimed marshes. This would lead to the need for higher earth embankments in these areas.

In epoch 3, the shoreline development noted in epoch 2 would continue. There would be a continued need to extend the earth embankments towards the west, gradually replacing the natural dune line. The earth embankments in the eastern half of the frontage would also need to be increased in height as coastal squeeze in front of the defences increases the risk of overtopping of the defences. Into epoch 3, associated with the increased discontinuity in coastal alignment, it is possible that a new outfall of the River Hun would open up. This behaviour would need closer monitoring and examination.

Epoch 1: Years 0 to 20 (2025)		Epoch 2:	Years 20 to 50 (2055)	Epoch 3: Years 50 to 100 (2105)		
Defences	Natural coast	Defences	Natural coast	Defences	Natural coast	
Defences would remain.	Continued erosion along the frontage with overwashing of the dunes and subsequent rollback.	Defences would remain.	Continued dune rollback with discontinuity forming between the fixed earth embankment and the dunes. Need for defence line to be extended westward to halt this discontinuity. Coastal squeeze in front of earth embankments due to sea level rise. Need for higher earth embankments to reduce	Defences would remain.	Same as epoch 2, with increased need for defences to be extended westwards and standard of protection provided by existing earth embankments to be increased.	

		threat of overtopping.	

i elette i i elittage e i itterition ana Braneaeter	F3.6.3	Frontage C – Titchwell and Brancaster
---	--------	---------------------------------------

Frontage	C – Titchwell and Brancaster	Chainage	8.2km	13.9km	
Western lir	nit of Brancaster bay to western end of Scolt Head Island.				
Section 1	– Description				
General	This frontage, encompassing Brancaster bay, contains the sma both connected by the A149 coast road. There is a RSPB natu Brancaster (Branodunum). The Royal West Norfolk golf course	re reserve se	eaward of Tit	chwell and a Roma	an fort at
Physical	This frontage is split into two by a vegetated earth flood bank t north to south and starts to the west of Brancaster village. This separates the Titchwell RSPB reserve from Brancaster marsh Royal West Norfolk golf course.	sea bank	Brinca	ster Bay	olt Head Island
	In general, the physical characteristics of both sections of this the same. There is a line of sand dunes at the seaward edge, saltmarsh (over one kilometre wide) and then the villages of Ti Brancaster at the landward edge.	backed by	Sea Thornhan	18 14 Brancaster A De	rinham epdale Frian B Burnham Market
	Brancaster bay itself has a number of spit-like features at its w eastern ends, potentially indicating a divergence of transport p the beach.				

Frontage C	- Titchwell and Brancaster	Chainage	8.2km	13.9km	
Defences and man- made features	There are raised earth sea banks along the front, and around brackish areas of the reserve. Managed realignment at Titchw the east wall along its northern section and strengthening the defence protecting the reserve. As a result, the section of the into natural saltmarsh. The Royal West Norfolk golf club is pro- and west of the practice green), rock revetment in front of the sand-filled geotextile bags (also in front of the western edge of seaward edge of the golf course are not formally managed, a the front face of the dunes to stabilise them. There are also a the south of the golf course. An 'erratic' earth sea bank also p to Staithe Cottage. This is really a secondary defence, as the protection. However, if these dunes disappeared, the saltmar would, in turn, expose Brancaster to direct wave action.	vell is currently Parrinder wal reserve to the otected by a c clubhouse an of the golf cour lthough the gr number of En orotects the ea dunes to the	y taking plac I which would ombination of d western ed rse). The dur oundsman d vironment A stern edge of north of the g	e. The plans involve breaching d then become the main Parrinder wall would develop of sea banks (to the north, sound dge of the course itself and nes that run west to east at the oes place tree cuttings etc on gency-managed defences to of this frontage from Brancaste golf course provide the main	o uth ie

Frontage C – Titchwell and Brancaster

Chainage 8.2km

km 13.9km

Section 2 – Baseline information (current data relevant to the frontage)

Tide and				LAT	MLWS	MLWN	MSL	MHWN	мнพ	S I	HAT	Spring range	Neap range	Correction CD/ODN
water	Burnham O	very Staith	ne					1.50	2.90			J		
levels (mOD		Sourc	e/meth	od		1:1	1:10	1:25	1:50	1:100	1:2	00	1:500	1:1000
N)	Brancaster Notes:	Royal	Hasko	ning 20	07	4.16	4.70	4.92	5.08	5.24	5.4	1	5.62	5.79
Extrem			Note	S										
es (mOD	Av. flood	North west		urrent data deduced from tidal diamond L on Admiralty chart no. 108 – note significantly fshore.										
N)	Av. ebbSouth eastThe flow pattern over much of the rising tide is relatively weak over mid-tide and towards west, increasing to a strong flow towards the east over high water. On the ebb, the flow								low is					
Current	Net residual	North west		towards the east, reversing to a strong flow towards the west at low water, flowing into the ebb tide from the Wash.										
S	The dominant waves arrive from the north east and north north east, but refraction causes the waves to approach the coast from different directions (north to north west). Along this frontage waves typically originate from 30°N. The annual 10 per cent exceedance significant wave height is between one and 1.5 metres (Futurecoast 2002). The 1:100 year wave height offshore is between six and eight metres (Anglian Water 1988).													
Wave	rather than e intertidal and	height offshore is between six and eight metres (Anglian Water 1988). Notes: Coastal retreat around the eastern end of Brancaster bay may be part of a general re-orientation of the shoreline rather than erosional loss. EA profiles for the Thornham area between 1992 and 2001 indicate slight erosion of the upper intertidal and dune face, but significant accretion of the lower intertidal zone. This is a response to sea level rise. Between Holme and Blakeney, Futurecoast (Halcrow 2002) notes that the coastline is typically accreting.												

Frontage	e C – Titchw	ell and Brai	ncaster					Chai	nage	8.2km	13.9km	
climat	Section 2 – Baseline information (current data relevant to the frontage)climatAverage rates (myr ⁻¹ climatIntertidaleunless stated) ⁷											
C	Location		gene ral	cres t	fac e	to e	backsho re	me an	MHW S	MLWS	trend	Source
Accreti	Average of	EA profiles						0.84	-0.33	1.19	Accretion	EA Coastal Trends Analysis (2007)
on/ erosion	Overview: The north Norfolk sediment budget is positive and sediment is currently available to the coastal system.											
	MaterialCoarse-grained sand and gravel (outer sand flats, barrier beaches an Fine-grained silt and clay (inner saltmarshes and associated mudflats)										ind dunes).	
	Sources	· · · · · · · · · · · · · · · · · · ·					th Norfolk	Inte	rnal	recycling Offshore	of intertidal s	ff erosion and ediments (coarse). g high magnitude, low
Sedime	Movement: A westward sediment transport pathway develops along the north Norfolk coast						Location		drift /yr x 0)	Source	<u> </u>	
nt	involving relatively small volumes of There are seasonal reversals in this (Evans et al 1998). During high ener				rection	1	Golf course (577050E 345150N)	0		Observat	tion by HR Wa	allingford
	conditions t patterns of from Burnha	sediment mo	ovement	, with r	nateria							

⁷ The rates highlighted in bold are those used when determining NAI and WPM baseline scenarios (section 4).

Frontage C – Titchwell and Brancaster	Chainage	8.2km	13.9km	
Section 2 – Baseline information (current data relevant to	o the frontage)			
leads to changes in normal sediment pathways and delivery and moves signficant amounts of sediment during single events (HR Wallingford 2002).				

Frontage C – Titchwell and Brancaster

Section 3 - Geomorphology

Brancaster bay has spit-like features at either end (Brancaster Staithe and Thornham), possibly indicating a Process divergence of transport paths along the beach. The shape of the beach is mirrored in the offshore contours which description: suggests the control is probably wave refraction (coupled with the wave shadow effect of Scolt Head Island). As a Overall result, the large-scale process occurring along this frontage is sediment being carried onto the frontage and description of focused over a large area along the Titchwell and golf club frontages. Sediment is then transported towards the current east and particularly to the west where it is deposited in the sediment sink close to the tidal delta. In this area local processes: sediment convergence and circulation occurs to form offshore bars. There are also large-scale, but more local, sources, interactions to the east of the frontage near the distal end of Scolt Head Island. Here, the frequent re-shaping of transport and the distal end acts to shelter small sections of the frontage from wave attack and allows this small area to form a sinks promontory in the natural line of the coast. This natural promontory is likely to change position in line with the position of the distal end. There are are a couple of significant offshore features along this frontage, namely the Norfolk Banks and the Burnham Flats, consisting of sand. There is a significant amount of reclaimed marsh along this frontage (around 54 hectares). These are lower than the natural saltmarshes and are therefore vulnerable to flooding and ponding. Past development: Patterns of Historically there has been a build-up of material at either end of Brancaster bay in the form of spits. The bay is change therefore still adjusting to the wave refraction pattern. There has been retreat of the shoreline in the area where there is no protection and the golf clubhouse has formed a small promontory. This is therefore likely to be the rough location of the drift divide. The dunes on Brancaster beach have experienced episodes of both advance and retreat over recent timescales (Futurecoast 2002). The natural saltmarshes have accreted vertically in pace with sea level rise since the mid-Holocene. The breaching of the Titchwell flood embankment in 1949 shows an interesting example of restoration of such areas. The areas inundated were colonised with saltmarsh vegetation, although the density of the vegetation cover was less than other saltmarshes along the north Norfolk coast. The development of a small tidal delta, and

13.9km

Chainage 8.2km

Frontage C – T	itchwell and Brancaster	Cł	nainage	8.2km	13.9km	
	the emergence of a stable tidal entrance process.	to the marsh, are also ir	mportant a	as examp	oles of the pot	ential restoration
	Recent trends: Some World War two tank trap defence Brancaster beach, but were originally ins by erosion (Futurecoast 2002). This dun 2003).	stalled seaward of the du	ines. This	implies p	post-war dune	growth, followed
	Future evolution (unconstrained): In an unconstrained scenario, natural rol greater rates around the tidal delta (in th the western and eastern frontages and g scenario the current promontory at the g the natural line. The dunes parallel to the some overwash fans moving residual be dunes, depending on the availablility of r large enough to act as a major natural co with fine-grained sediment, enabling the reclaimed marshes are lower than the na	e centre of the cell), cau gradually retreating landw olf club would experience barriers on the open co each sediment over the m new sediment. It is unlike pastal defence in the future m to accrete vertically as atural marsh and would b	sing the si vards towa e rapid ero past are lik narshes. T ely, howev ure. The n s sea level pe particul	horeline ards the osion as cely to dis hey may rer, that a atural sa ls continu arly pror	to move furthe centre. Under the shoreline sappear, to be provide the for any new forma altmarshes are ue to rise. How	er seaward at both an unconstrained adjusts back to e replaced by oundation for new ations would be well supplied vever, the
Dependency:	creation of coastal dunes if ponding of w Control and sensitivities	Control features	Signific		Dependence	Chainage
Factors affecting the	Wave refraction and the wave shadow effect caused by Scolt Head Island.	Influence of the tidal delta	Seconda		Fransient	
evolution of the frontage	Sea level rise. Position of the sediment divide.	Position of distal end of Scolt Head Island	Primary	Г	Fransient	
both	Internal interaction	External Interaction				

Frontage C – T	itchwell and Brancaster	Chainage 8.2km 13.9km
internally and externally	Sediment supply from the centre of the unit, feeding towards the western and eastern limits of the frontage.	Position of Scolt Head Island affects the amount of wave refraction and so the angle at which the waves approach this frontage.
	Sea level / climate change For recent Defra (2006) guidance on sea	a level rise due to climate change, see section 1.4 in the main report.
Influence: Factors that may	No influences on other areas identified.	
influence evolution of other areas		

Frontage C – Titchwell and Brancaster

Chainage: 8.2km 13.9km

Section 4 – Baseline management scenarios^{8,9}

No active Scenario description

intervention (NAI)

This scenario assumes that defences are no longer maintained and will therefore fail over time. Exact timing of defence failure cannot be deduced. However, an epoch of failure can be determined, as described in the 'Assessment of coastal defences' report.

Shoreline response

In epoch 1, sedimentation would continue behind Scolt Head Island, as discussed in the NAI scenario for frontage D. This would cause a reduction in the influence of the tidal delta of Brancaster harbour channel and would therefore reduce the amount of sediment pulsing to the distal end of Scolt Head Island. As a result, the interactions between the distal end of the island and eastern edge of the golf course in the lee of the distal end would remain similar to that seen recently. As a result, there would continue to be a small promontory at this location that would move around locally in line with the movements of the distal end. Most of the defences along this frontage are likely to have failed by the end of epoch 1 under a scenario of NAI, but until this failure is likely to behave the same. This would result in continued rollback of the dune system, but accretion across the foreshore areas. The current promontory around the golf clubhouse would remain.

By the end of epoch 2 all the defences are likely to have failed. This would allow the frontage to regain its natural position. The predicted increased rate of sea level rise would allow more water to enter behind the golf course through Mow Creek. Sedimentation across the saltmarsh should keep pace with the rising sea level and there would therefore be continued vertical accretion. The former brackish areas of the nature reserve would gradually develop into saltmarsh due to frequent inundation. There would be some local changes around the small

⁸ All management scenarios assume that the current management practices undertaken in neighbouring SMP areas will continue. The potential effect of wind farms offshore of this study frontage has been noted. However, within this assessment of baseline scenarios, it was not considered relevant to quantify these effects due to the uncertainty surrounding this issue.

⁹ All assessments of shoreline response have a band of uncertainty that increases for later epochs.

promontory that has developed in the lee of Scolt Head Island's distal end, but these changes would be relatively small-scale and should not affect the general functioning of the frontage.

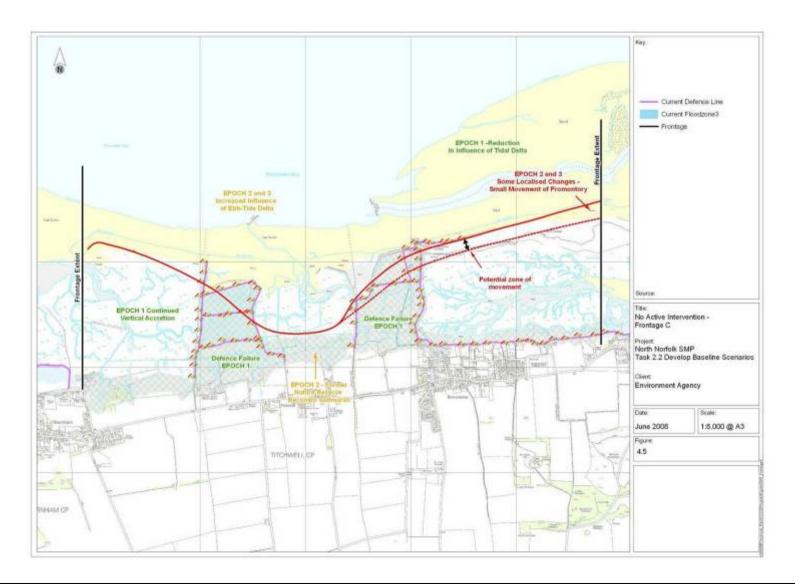
In epoch 3, the whole system would continue to roll back, squeezing the saltmarsh area and causing an overall reduction in the total area of saltmarsh. As larger volumes of water enter behind the dune line through Mow Creek and the other drainage channels, the dunes could initially become detached from the mainland and would then either cease to exist or move onshore and merge with the existing saltmarsh. There would be some inundation of the whole saltmarsh area right back to higher ground. However, this is not likely to cause flooding to a large number of properties.

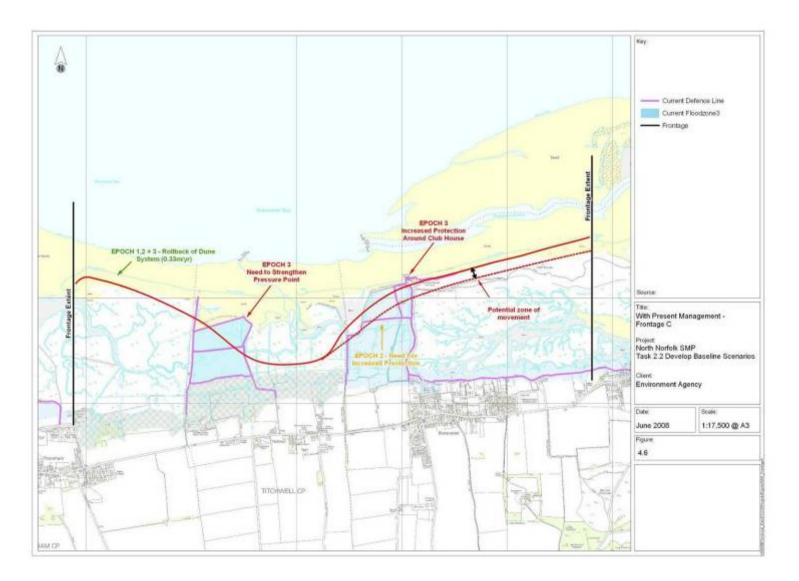
Epoch 1: Years 0) to 20 (2025)	Epoch 2: Yea	rs 20 to 50 (2055)	Epoch 3: Years 50 to 100 (2105)		
Defences	Natural coast	Defences	Natural coast	Defences	Natural coast	
Defences remain, but towards the end of the epoch there is likely to be increased defence failure.	Rollback of dune system and accretion across foreshore.	By the end of this epoch, all defences would have failed.	Frontage would realign to natural position. Increased tidal prism behind golf course. Titchwell nature reserve would develop into saltmarsh.	No defences would remain.	Continued rollback of system and squeeze of saltmarsh. Some inundation of saltmarsh area back to higher ground.	

With present Scenario description

management (WPM)

This scenario assumes that defences are maintained to provide a similar level of protection to that provided at present. This will involve regularly inspecting and maintaining defences. It is assumed under this scenario that the defence at the golf course is maintained and that planned realignment in front of Titchwell RSPB reserve happens.


Shoreline response


In epoch 1 there are likely to be the same developments as under the NAI scenario. Sedimentation would continue behind Scolt Head Island, as discussed in the WPM scenario for frontage D. This would cause a reduction in the influence of the tidal delta of Brancaster harbour channel and would therefore reduce the degree of sediment pulsing to the distal end of Scolt Head Island. As a result, the interactions between the distal end of the island and eastern edge of the golf course in the lee of the distal end should remain similar to that seen recently. There would continue to be a small promontory at this location that would move around locally with the movements of the distal end. The sedimentation behind Scolt Head Island should also provide increased protection to the frontage to the east of the golf clubhouse. The current promontory around the golf clubhouse would remain and the defences here would continue to provide the required standard of protection. There would also be continued natural rollback of the dunes but accretion across the foreshore.

Into epoch 2, some of the defences would come under increased pressure. The current line of geotextile bags that protects the western edge of the golf links is likely to need extending in an easterly direction to protect the golf course from inundation during storm events or high tides. It is likely that, during this epoch, the rock revetment protecting the golf clubhouse would provide the required standard of protection.

By epoch 3, all the defences protecting the golf course would need to be strengthened. The eastern corner of the Titchwell reserve (where the north wall meets the east wall) would become a 'pressure point', as would the area around the golf clubhouse. As a result, they would suffer increased erosion and need greater protection. Elsewhere along the frontage, there would be continued rollback of the dune system, but accretion of the foreshore with erosion focused towards the middle of the frontage. Due to the predicted rate of sea level rise the natural dunes are likely to experience more frequent overtopping. There is therefore the potential for them to become swamped and no longer exist. The natural areas of this frontage would therefore have sand/mudflat at the seaward edge and saltmarsh at the landward edge.

Epoch 1: (2025)	Years 0 to 20	Epoch 2: Year	rs 20 to 50 (2055)	Epoch 3: Years 50	to 100 (2105)
Defences	Natural coast	Defences	Natural coast	Defences	Natural coast
Defences would remain.	Rollback of dune system and accretion across foreshore.	Defences would remain. Need to extend geotextile bags towards the east.	Certain areas of the current defences would come under increased pressure as other sections of the coast continue to roll back and realign.	Defences would remain, but need for increased protection along the eastern corner of the Titchwell reserve and around the golf clubhouse.	Two 'pressure points' develop as they become misaligned with th natural coastline. Potential for loss sand dunes.

F3.6.4 Frontage D – Scolt Head Island

Frontage D	– Scolt Head Island	Chainage	13.9km	23.4km
Western ex	tent of Brancaster to Norton Hills.			
Section 1 -	Description			
General	This frontage, encompassing Scolt Head Island, contains the all Burnham Deepdale, located on the A149. It also includes Burnh east of Brancaster Staithe and Burnham Deepdale. Scolt Head	nam Norton, I	ocated just r	north of the coast road to the
Physical	Scolt Head Island is about 6.5 kilometres long and is irregular in consists of a main shingle beach with dunes running parallel to wave crests. The island is separated from the mainland by Norte which runs through extensive marsh areas. Both the western an ends of Scolt Head are marked by tidal deltas: to the west the ti formed by the combined tidal discharge from Norton Creek and marsh. To the east it is formed by the discharge from the Burnh channel. Near Burnham Norton there is a section of reclaimed marsh tha into the Scolt Head Island National Nature Reserve. This is sepa the natural marsh by a well-vegetated earth flood bank.	n shape. It the incident on Creek nd eastern dal delta is Brancaster am harbour t extends	Titchwell	Brancaster Staithe Brancaster Burnham Deepdale Friary Burnham Deepdale Friary Burnham Deepdale Friary Burnham Covery Stait Burnham Deepdale Friary Burnham Covery Stait Burnham Covery Stait Sta
	The River Burn discharges onto the saltmarsh to the east of Bur			
Defences and man-	There are currently no coastal defences on Scolt Head Island. A of this frontage at the seaward edge of the saltmarsh. Between further seaward reflecting reclamation of a former area of saltma tidal sluice between Burnham Norton and Burnham Overy Staith	Burnham De arsh. The ou	epdale and	Burnham Norton it pushes

	23.4km

de nd ater		LAT	MLWS	MLWN	MSL	MHWN	MHWS	HAT	Spring range	Neap range	Correction CD/ODN
vels	Burnham Overy Sta					1.50	2.90				
nODN .		Source/met		1:1	1:10	1:25	1:50	1:100	1:200	1:500	1:1000
	Burnham Overy Staithe	Royal Hasko 2007	oning	3.96	4.52	4.75	4.92	5.09	5.26	5.48	5.65
trem	Notes:										
		Notes									
nODN	Av. flood Av. ebb Net residual	Notes Current data The flow par increasing to reversing to	tern over o a strong	much of th flow towa	ne rising rds the e	tide is relat	ively weak gh water. C	over mid In the eb	-tide and t b, the flow	owards t	he west, ds the east,

Frontage	e D – Scolt H	lead Island						Chain	age ⁻	13.9km	23.4km	
ection 2		information	(current	t data ı	relevar	nt to	the fronta	ige)				
limate	Average ra unless stat	tes (myr⁻¹ ted) ¹⁰	Cliff/bac	ckshore	e featur	е	Intertidal				Nearshore	
	Location		gener al	cres t	fac e	to e	backsh ore	genera	MHW I S	MLW S	Trend	Source
ccreti	Scolt ridge							-1.00			Landward migration	North Norfolk CHaMP (2003)
on/ erosion	Scolt ridge (western end)							3.50			Westward migration	North Norfolk CHaMP (2003)
	Average of N1B1 to N1							-0.67	-0.06	-1.39	Landward migration	EA Coastal Trends Analysis (2007)
	Western en ridge (EA p	d of Scolt rofile N1B1)						-0.04	3.57	-1.97	Westward migration	EA Coastal Trends Analysis (2007)
	Scolt saltma	arshes	4.86 mi	myr ⁻¹							Vertical accretion	Andrews et al (1999)
									is currer	tly availa	able to the co	astal system.
	Material											
	Sources		Erosion o (fine). Erosion o Norfolk c	of cliffs	along			Nea sec Off	arshore s iments (seabed, o coarse).		nd recycling of intertidal nitude, low frequency

Frontage	P – Scolt Head Island		Chainage 13.9km 23	.4km
Section	2 – Baseline information (current data rele	vant to the f	rontage)	
	Movement: There is a westward sediment	Location	Net drift (m ³ /yr x 1000)	Source
Sedime	transport pathway along the north Norfolk	Scolt		
nt	coast during low magnitude, high	Head		
	frequency events involving relatively small	Island	190 (westward)	Vincent (1977)
	volumes of sediment. There are seasonal	(584500E		
	reversals of this direction (Evans et al	346700N)		
	1998). During high energy surge conditions			
	there may be a sudden increase in			
	patterns of sediment movement, with			
	material from the Burnham Flats being			
	transported. This leads to changes in			
	normal sediment pathways and delivery			
	and moving of signficant amounts of			
	sediment during single events (HR			
	Wallingford 2002).			

¹⁰ The rates highlighted in bold are those used when determining NAI and WPM baseline scenarios (section 4).

Frontage D – Scolt Head Island

Section 3 - Geomorphology

Scolt Head Island grows by the development of the lateral ridges, with each new ridge lengthening the island Process towards the west. The formation of the lateral ridges is very similar to the formation of the recurves of Blakeney description: Point - wave action from the north west, combined with a pulsing of sediment from the west. When a new lateral Overall ridge forms, it starves the sheltered ridge of sediment and the feature becomes essentially relict (no longer description of interacts with coastal processes). The area between the ridges has been filled with saltmarsh with younger, lower current marshes to the west. Norton Creek separates the island from the natural and reclaimed saltmarsh that extends up processes: to the relict cliff line. Norton Creek empties entirely at low tide. sources, transport and Alternatively, it has been suggested that the Burnham harbour channel can be thought of as a storm breach in a sinks continuous ridge stretching from Holkham to Brancaster Staithe. In this theory, tidal scouring keeps the channel open and the sheltered, tidally-dominated waters allowed the Great Aster Marsh to develop. However, it is now thought that, if a breach did occur, it was probably at an early stage in development before mud was deposited and the saltmarsh vegetation established. There are a couple of significant offshore features along this frontage, namely the Norfolk Banks and the Burnham Flats, consisting of sand. There are about 121 hectares of reclaimed marshes near Burnham Norton. Past development: Patterns of Scolt Head Island seems to be moving south and extending west (Andrews et al 2000; Bridges 1989). It appears change that the eastern end has moved south faster than the western end (Bridges 1989). The shingle needed to extend the spit westward originated from the central section of the coastline and it was potentially being supplied to some degree from the offshore area. This movement of the spit seems to suggest that Scolt Head Island is realigning itself to face the incident wave direction from the north east. The development of the island has provided shelter for the saltmarsh to grow in the back-barrier area. This now acts as a sink for fine sediment, as it is transported into the harbour, up into Mow Creek (inland of the golf course) and into Norton Creek, which is now very shallow in

Chainage

13.9km

23.4km

places (Futurecoast 2002). As the barrier island continues to grow west, the width of the Brancaster harbour inlet

Frontage D – S	colt Head Island	Chainage	13.9km 23	3.4km	
	has been reduced. The dunes along Scolt Head Island are also are not fully reforming by rollover processes land (CHaMP 2003). Recent trends: Current trends would appear to be similar to Future evolution (unconstrained):	es and instead are progressive	ely narrowing as	s the barriers mo	
	The formation of the lateral recurves may a the bar feed from the west decreases in per- unconstrained scenario, the reclaimed area of the Brancaster channel and potentially in balance the current siltation of the Brancas east.	eriod and volume due to the re a behind Scolt Head Island w ncreasing flow to the east. Th ster channel, tending to force	educing size of t ould be opened is increased pris Scolt Head Islar	the inlet. Under , increasing the sm would, to a c nd to develop fu	the tidal prism legree, rther to the
Dependency:	Control and sensitivities	Control features	Significance		Chainage
Factors affecting the	The main constraint to the development of Scolt Head Island is the location of the	Scolt Head barrier	Primary	Long term development	
evolution of	Brancaster and Burnham harbour	Brancaster channel	Primary	Variable	
the frontage	channels.	Burnham harbour channel	Secondary	Variable	
both					
internally and	Internal interaction	External interaction			
externally	The supply of sediment from the front face of Scolt Head Island feeds east and west conflicting with the development of the channels. The tidal prism of both channels influences the development of the eastern and western ends of Scolt Head	The supply of sediment from	the nearshore	area.	

Frontage D – S	colt Head Island	Chainage	13.9km	23.4km
	Island.			
	Sea level / climate change			
	For recent Defra (2006) guidance on sea le	evel rise due to climate change	, see sectio	on 1.4 in the main report.
Influence:	Scolt Head Island, particularly at its wester			
Factors that	frontage with sediment and influences the		ur channel.	This in turn acts to shelter the
may	frontage and modified wave action influence	es the frontage.		
influence				
evolution of				
other areas				

Frontage D – Scolt Head Island

Chainage: 13.9km 23.4km

Section 4 – Baseline management scenarios^{11,12}

No active Scenario description

intervention (NAI)

This scenario assumes that defences are no longer maintained and will therefore fail over time. Timing of exact defence failure cannot be deduced. However, an epoch of failure can be determined, as described in the 'Assessment of coastal defences'.

Shoreline response

In epoch 1, earth embankments at the landward edge of the saltmarsh should remain intact. As a result, the processes occurring would be similar to those seen today: movement of Scolt Head Island towards the west and south (rates of 3.57 and 0.67 metres a year respectively), retreat towards land of the eastern edge of the island and sedimentation behind the barrier island (with associated siltation of Norton Creek). Towards the end of epoch 1, there could be more frequent overtopping of the central part of the island near the 1953 and 1978 storm surge breakthroughs. This would cause sand and gravel to be washed onto the low marshes and flats behind the barrier island. The back-barrier marshes would continue to accrete vertically at rates similar to those noted recently (4.86 millimetres a year). The sustained movement of the barrier island towards land and to the west would continue to squeeze the back-barrier areas due to the long-term under-supply of coarse-grained sediment to the barrier island. This would cause changes in the configuration of the two tidal inlets and ebb-tidal deltas to the west and east of the barrier. This in turn would affect the sites of erosion and accretion. The back-barrier marshes would continue to accrete vertically at the rates discussed above. The formation of the lateral recurves could become less frequent and they could reduce in size as the pulsed nature of the bar feed from the west reduces in period and volume due to the decreasing size of the inlet.

¹¹ All management scenarios assume that the current management practices undertaken in neighbouring SMP areas will continue. The potential effect of wind farms offshore of this study frontage has been noted. However, in this assessment of baseline scenarios, it was not considered relevant to quantify these effects due to the uncertainty surrounding this issue.

¹² All assessments of shoreline response have a band of uncertainty that increases for later epochs.

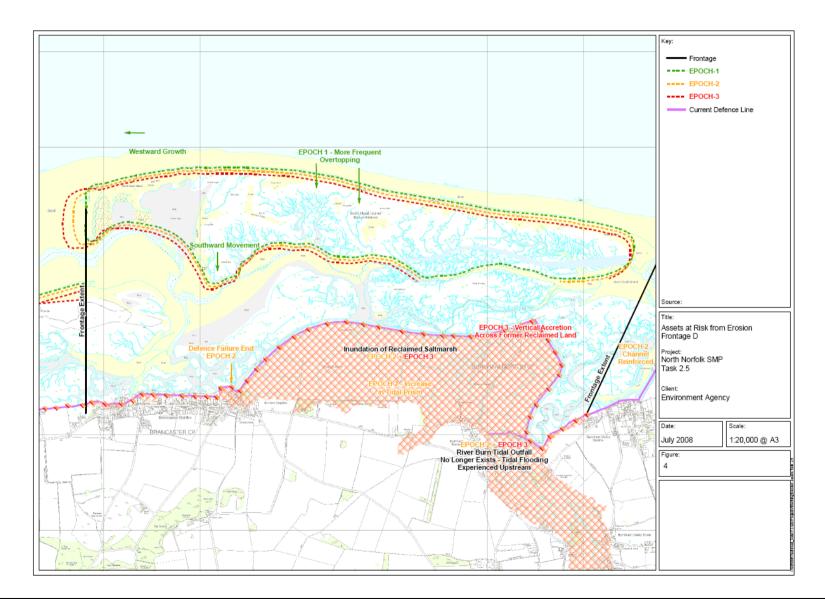
Into epoch 2 there would be a higher likelihood of defence failure. By the end of epoch 2, all the defences would have failed. This would initially increase the tidal prism, which would reinforce the Brancaster harbour and Burnham harbour channels, starting a reversal of the trend discussed above. During this initial inundation of the former reclaimed areas, the saltmarsh is unlikely to experience significant accretion. Also in epoch 2, it is assumed that the outfall of the River Burn would no longer be managed under this scenario. It is therefore likely that it would take a more natural course out across the marshes. This would increase the influence of the Burnham harbour channel and also cause flooding upstream in Burnham Norton and Burnham Market.

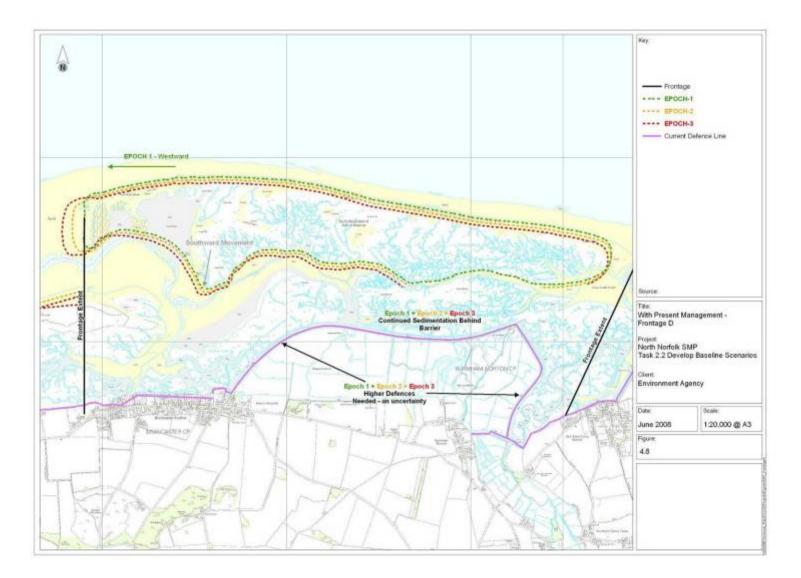
By epoch 3, the back-barrier areas are likely to have adjusted to the increase in tidal prism. As a result, there would be accretion in these areas, with saltmarsh becoming re-established.

Epoch 1: Years 0 to 20 (2025)		Epoch 2: Years 20 to 50 (2055)		Epoch 3: Years 50 to 100 (2105)	
Defences	Natural coast	Defences	Natural coast	Defences	Natural coast
Defences remain, but towards the end of the epoch more defences would fail.	Westward and southward movement of Scolt Head Island, with retreat towards land focused at the eastern end. Continued vertical accretion of the back- barrier areas (including saltmarsh).	By the end of this epoch all the defences would have failed.	Large increase in tidal prism behind the barrier island, with associated strengthening of the ebb- tide deltas. Some tidal flooding upstream may occur in Burnham Norton and Burnham Market.	Complete defence failure.	Saltmarsh would re- establish and barrie island re-starts trend of rollback.

NAI scenario summary

With present Scenario description


management (WPM) This scenario assumes that the current policy for the frontage continues. This will usually involve maintaining defences to provide a similar level of protection to that provided at present and regularly inspecting and maintaining the defences.


Shoreline response

The WPM scenario response would initially be the same as in the unconstrained situation for epoch 1: movement of Scolt Head Island towards the west and south (rates of 3.57 and 0.67 metres a year respectively), retreat towards land of the eastern edge of the island and sedimentation behind the barrier island (with associated siltation of Norton Creek). Towards the end of epoch 1, there is likely to be more frequent overtopping of the central part of the island near the 1953 and 1978 storm surge breakthroughs. This would cause sand and gravel to be washed onto the low marshes and flats behind the barrier island. The back-barrier marshes would continue to accrete vertically at rates similar to those noted recently (4.86 millimetres a year). The continued landward and westward movement of the barrier island would continue to squeeze the back-barrier areas due to the long-term under-supply of coarse-grained sediment to the barrier island. This would cause changes in the configuration of the two tidal inlet and ebb-tidal deltas to the west and east of the barrier and in turn affect the sites of erosion and accretion. The back-barrier marshes would continue to accrete vertically at rates discussed above. The formation of the lateral recurves may become less frequent and they may become smaller as the pulsed nature of the bar feed from the west decreases in period and volume due to the reducing size of the inlet.

As the barrier continues to move towards land, it would also gradually squeeze the back-barrier areas and cause Norton Creek to silt up completely. Into epochs 2 and 3, the pressures from sea level rise would increase erosion and reduce the width of the shingle bank. Overtopping would become more frequent and water has the potential to pond on the reclaimed areas inland of the existing earth embankments. To prevent this, increasingly higher defences would probably be needed or the natural dune line on the seaward edge of Scolt Head Island replaced with hard defences. By the end of epoch 3, it is likely there would not be a detached barrier island. The frontage would effectively become an open coast frontage, with beach at the seaward edge transgressing to saltmarsh, with the landward edge being marked by higher ground. In epoch 3, the costs of maintaining and improving the earth embankments would be substantial.

Epoch 1:	Years 0 to 20 (2025)	Epoch 2: Years 2	20 to 50 (2055)	Epoch 3: Years 50 to 100 (2105)	
Defences	Natural coast	Defences	Natural coast	Defences	Natural coast
Defences would remain.	Movement of Scolt Head Island towards the west and south, with retreat towards land focused at the eastern end. Continued vertical accretion of the back- barrier areas (including saltmarsh).	Defences would remain. Increasing need for higher defences and/or replacement of natural defences with raised earth embankments.	Squeeze of back-barrier areas due to sea level rise with Norton Creek silting up. More frequent overtopping and ponding on reclaimed marsh unless managed by higher defences.	Defences would remain. Further squeeze of back-barrier areas with ever- increasing need for harder, higher defences.	Escalation of epoch 2

F3.6.5 Frontage E – Holkham bay

Frontage E	E – Holkham bay	Chainage	23.4km	34.4km
Norton Hills	s to Bob Hall's Sands.			
Section 1 -	- Description			
General	This frontage covers the villages of Burnham Overy Staithe and Holkham and the beach access point at Holkham Gap. Betweer National Nature Reserve is inland of the line of sand dunes.			
Physical	This frontage is characterised by an extensive area of reclaimed and has an artificial appearance. Reclamation began in 1660 ar until 1860, by which time 800 hectares of former saltmarsh had enclosed. This reclaimed area is used for arable production in s A line of sand dunes (Holkham Meals/Meols) marks the seawar the reclaimed area. This dune line was planted with conifers alo its length between 1853 and 1891. Before it was reclaimed, it has been suggested that this frontage have resembled that of Scolt Head Island, with the present day Meals being sand islands or offshore bars. Lodge marsh (in frontage F) forms the ramparts of the Wells had delta, which is the largest of five deltas along the north Norfolk of tidal delta forms the extensive sand waves and sand flats appar	nd continued been ome places. d edge of ong most of e would Holkham rbour tidal coast. This rent between	Burnha Burnha Lodge mars	m Overy ¹⁰ Burnham ¹⁰ Burnham ¹⁰ Burnham ¹⁰ Creake Abbey (rems off sh and Holkham Gap.
Defences and	Burnham Overy Staithe is protected by both private walls and w Environment Agency. These defences stop about 900 metres no	•		
man-	with the natural dune line (see above). This extends up to Holkh			
made	the lifeboat station and is fenced off in some places. Behind this			
features	Sea Wall") that runs directly from Holkham Gap to Wells in a so protection to Wells and Holkham. A clay/sand bank with a revet south alongside the miniature railway. Along the quay in Wells t	ment along tl	he seaward	face runs directly north to

Frontage E – Holkham bay	Chainage 2	23.4km
complete the defence.		

34.4km

		LAT	MLWS	MLWN	MSL	MHWN	MHWS	HAT	Spring range	Neap range	Correcti	on CD/OD	N
	Wells					1.25	2.75			Ū	CD is 0.7	75 metres	below Ol
_		Sou	ce/metho	d		1:1	1:10	1:25	1:50	1:100	1:200	1:500	1:1000
1	Wells	Roya	al Haskoni	ng 2007		3.87	4.47	4.70	4.88	5.06	5.24	5.48	5.66
	Notes:												
		n	Not										
_	Av. flood	-		rent data d									
	Av. ebb	-					•			•	mid-tide a		
Net west, changing to a weak flow towards the east over high water. On the ebb, the flow is strong									•				
towards the east, reversing to a weaker now towards the west at low water, in							a weaker i	low low	ards the v	vest at lov	v water, nov	wing into ti	ade er
	residual	ent lide foil the Wash.											
		inontu		a from the	north a	ant and n	arth narth	aget b	ut rofroatie		the would	to opproo	ah tha
	The dom		vaves arriv								the waves		
	The dom coast fro	m diffe	aves arriv rent direct	ons (north	to nort	h west). A	long this f	rontage	waves ty	pically orig	ginate from	30°N. The	e annual
	The dom coast fro 10 per ce	m diffe	vaves arriv rent directi eedance s	ons (north ignificant v	to nort vave he	h west). A eight is be	long this f tween one	rontage and 1.	e waves ty 5 metres (pically orig		30°N. The	e annual
	The dom coast fro 10 per ce wave hei	m diffe ent exc ight offs	vaves arriv rent directi eedance s shore is be	ons (north ignificant v etween six	to nort vave he and eig	h west). A eight is be ht metres	long this f tween one (Anglian \	rontage and 1. Nater 1	e waves ty 5 metres (988).	pically orig	ginate from ast 2002). 7	30°N. The The 1:100	e annual year
	The dom coast fro 10 per ce wave hei Notes: E	m diffe ent exc ight offs Environ	vaves arriv rent directi eedance s shore is be ment Ager	ons (north ignificant w etween six	to nort vave he and eig have s	h west). A eight is be ht metres shown anr	long this f tween one (Anglian \ hual accret	rontage and 1. <u>Nater 1</u> ion rate	e waves ty 5 metres (988). es of 300,0	pically orig Futurecoa	ginate from ast 2002). T ear over the	30°N. The The 1:100	e annual year ade.
	The dom coast fro 10 per ce wave hei Notes: E Although	m different exce aght offs Environi the low	vaves arriv rent directi eedance s shore is be ment Ager ver intertic	ons (north ignificant v etween six ncy profiles lal area ha	to nort vave he and eig have s s been	h west). A eight is be ht metres shown anr accreting,	long this f tween one (Anglian \ nual accref the uppe	rontage and 1. <u>Nater 1</u> ion rate	e waves ty 5 metres (988). es of 300,0	pically orig Futurecoa	ginate from ast 2002). 7	30°N. The The 1:100	e annual year ade.
	The dom coast fro 10 per ce wave hei Notes: E Although	m different exce aght offs Environi the low	vaves arriv rent directi eedance s shore is be ment Ager ver intertic	ons (north ignificant w etween six	to nort vave he and eig have s s been	h west). A eight is be ht metres shown anr accreting,	long this f tween one (Anglian \ nual accref the uppe	rontage and 1. <u>Nater 1</u> ion rate	e waves ty 5 metres (988). es of 300,0	pically orig Futurecoa	ginate from ast 2002). T ear over the	30°N. The The 1:100	e annual year ade.

Frontage	E – Holkh	am bay						Cha	inage	23.4km	34.4km	
Section 2	2 – Baselin	e informatio	n (curre	nt data	a releva	ant to	o the fronta	ge)				
Accreti		rates (myr ⁻¹	Cliff/ba				Intertidal				Nearshore	
on/ erosion	Location		gene ral	cres t	fac e	to e	backsho re	gener al	MHW S	MLWS	Trend	Source
	Average of profiles No. N1A6							-1.05	-0.58	-0.56	Erosion	EA Coastal Trends Analysis (2007)
	Overview	: The north	Norfolk s	edimer	nt budg	jet is	positive and	sedimer	nt is curr	ently ava	ilable to the c	oastal system.
	Material	Coarse-grai									dunes).	
Sedime nt	Sources	E	Frosion c Frosion c coast (fin	of Holde of cliffs e).	erness along r	cliffs	(fine). Norfolk	Internal	Nears intertic Offsho freque	nore seat lal sedim re banks ncy even	ents (coarse). (during high i	magnitude, low
						-	Location	Net drift	(m³/yr	x 1000)		Source
	Movement: There is a westward sediment transport pathway along the north Norfolk coast during low magnitude, high frequency events involving relatively small volumes of sediment. There are seasonal reversals in this direction (Evans et al 1998). During high energy surge conditions there may be a sudden increase in patterns of sediment movement, with material from the Burnham Flats being transported. This leads to changes in normal sediment pathways											

 $[\]frac{1}{13}$ The rates highlighted in bold are those used when determining NAI and WPM baseline scenarios (section 4).

Frontage E – Holkham bay	Chainage	23.4km	34.4km	
Section 2 – Baseline information (current data relevant to and delivery and moving of significant amounts of sediment during single events (HR Wallingford 2002).	o the frontage)			

Frontage E – Holkham bay

Chainage 23.4km 34.4km

Section 3 - Geomorphology

Process description: Overall description of current processes: sources, transport and sinks	The geomorphology in this frontage is complex. It represents a series of regressive overlap (depositional) features that have built further seaward over the past 6,000 to 7,000 years. This regressive sequence can be seen in the present shape of the coast. A series of beach bars develops on the lower shore face during storm events. These migrate towards land, increasing in height and grain size. Around the high water mark they stabilise and become colonised by pioneer species. This stable ridge can then develop into a sand dune if there is enough sand available, such as north of Holkham Gap (Holkham Meals/Meols) or may persist as low gravel ridges such as those embedded in the Stiffkey saltmarshes. Saltmarsh colonisation occurs in the shelter of the dune or gravel ridges, such as at Holkham Gap where saltmarsh development began in 1985. The inner saltmarsh line is marked by the old cliff line in the form of a gravel bank. As well as 'natural' saltmarsh development, there is also just under 300 hectares of reclaimed marshes at Holkham.
	Offshore of this frontage, there are are a couple of significant features, namely the Norfolk Banks and the Burnham Flats, consisting of sand. These offshore sand banks, as well as the wide surf zone and small sand bars, act to dissipate wave energy along this stretch of coastline.
	To the east of this frontage, there is a tidal delta at Wells-next-the-Sea. To the west of this frontage there is also a tidal delta at Burnham harbour. Both act to cause the longshore pathway of sediment to be pushed seaward and its movement to become intermittent. This leads to the formation of a pronounced lobe in the lower intertidal leading to reduced energy in the upper shore. These conditions therefore promote the growth of sand dunes.
Patterns of	Past development:
change	There has been significant accretion near Holkham over the last century. The wave energy in the area seems to be reducing as shown by the deposition of material and by the increasingly fine material silting Wells harbour. This decrease has been caused by the build-up of a bar in front of Holkham, causing vegetation colonising the flats and reducing sediment mobility. Also, reclaiming the saltmarsh and losing the tidal inlet at Holkham has excluded tidal waters from wide areas, significantly reducing the tidal prism and the influence of tidal exchange on shoreline

Frontage E – H	olkham bay	Chainage	23.4km 34	.4km	
	evolution (Futurecoast 2002).				
	Recent trends: As a result of these developments, there has been a tr progradation of the sand flats. However, recent EA mo longer accreting but is effectively starting to erode. Thi profiles. The colonisation of the front ridge by fir trees Future evolution (unconstrained): Continued dredging of the Burnham channel will be ne Major changes could occur at Holkham if the marshes sand would move offshore instead of acting as a sink. Meals until no barrier remains, only back-barrier marsh such as is now found at Stiffkey.	onitoring data have s trend has been s constrains the na eeded if the preser behind the defend This could lead to	e clearly shown seen throughou tural ability of th nt width is to be ces were opene o the westward r	that this frontag t both the upper ne dunes to roll k maintained. d up. This could novement of Ho	e is no and lower back. I mean that Ikham
Dependency:	Control and sensitivities	Control	Significance	Dependence	Chainage
Factors affecting the evolution of	This frontage is greatly influenced by the two tidal deltas at the western and eastern edges of the	features Offshore bank/bar	Primary	Variable	-
the frontage	frontage (Burnham harbour channel and Wells harbour channel). These channels effectively contain	Burham harbour channel	Primary	Variable with tidal prism	-
internally and externally	the reclaimed saltmarsh and dune system between them. An offshore bar controls the development of the cell by providing sheltered conditions.	Wells harbour channel	Primary	Variable with tidal prism	-
	Internal interaction	External interac	tion		
	Currently the tidal prism around Holkham is reducing which has caused the effect of tidal exchange on shoreline evolution to reduce. If the marshes were opened up, sand may move offshore instead of	Following the pre up under an unco changes in the B potential to influe	onstrained scen ournham harbou	ario, there woul r channel. This	d be has the

Frontage E – H	lolkham bay	Chainage 23.4km 34.4km
	acting as a sink. This would effectively build up the offshore bank.	Scolt Head Island and so the location of its eastern end.
	Sea level / climate change	
	For recent Defra (2006) guidance on sea level rise du	ue to climate change, see section 1.4 in the main report.
Influence:	Changes in the tidal prisms of the Burnham or Wells	harbour channels will influence neighbouring frontages.
Factors that		
may		
influence		
evolution of		
other areas.		

Frontage E – Holkham bay

Chainage: 23.4km 34.4km

Section 4 – Baseline management scenarios^{14,15}

No active Scenario description

intervention This scenario assumes that defences are no longer maintained and will therefore fail over time. Exact timing of defence failure cannot be deduced. However, an epoch of failure can be determined, as described in the 'Assessment of coastal defences' report.

Shoreline response

In epoch 1 there would be a sustained supply of sediment to this frontage. However, it would continue to react to rising sea levels by exhibiting erosion along the entire profile. As a result, both the lower and upper beach profiles would show signs of erosion at rates similar to those experienced recently (a general retreat of 1.05 metres a year). There is unlikely to be any significant beach steepening due to the wide foreshore. Throughout this epoch the dunes would remain anchored in position because of the fir trees that currently follow the line of the sand dunes. There are a number of defences that would fail in epoch 1, potentially causing some inundation onto the reclaimed saltmarsh during high tide events.

Into epochs 2 and 3, when most of the defences towards the west and east of the frontage would have failed and the marshes opened up, there could be major changes. Initially, Holkham Meals/Meols would become a detached barrier island as tidal exchange occurs behind the line of stabilised dunes. The Burnham channel would no longer be constrained and would therefore take a more natural meandering course out to sea. This would cause the tidal delta to move gradually towards the west. Opening up the marshes behind the dunes would also substantially increase the tidal prism acting on the Wells and Burnham harbour channels. As a result, the influence of the tidal delta would increase. This would provide increased wave protection to Holkham Meals/Meols sand dunes, located

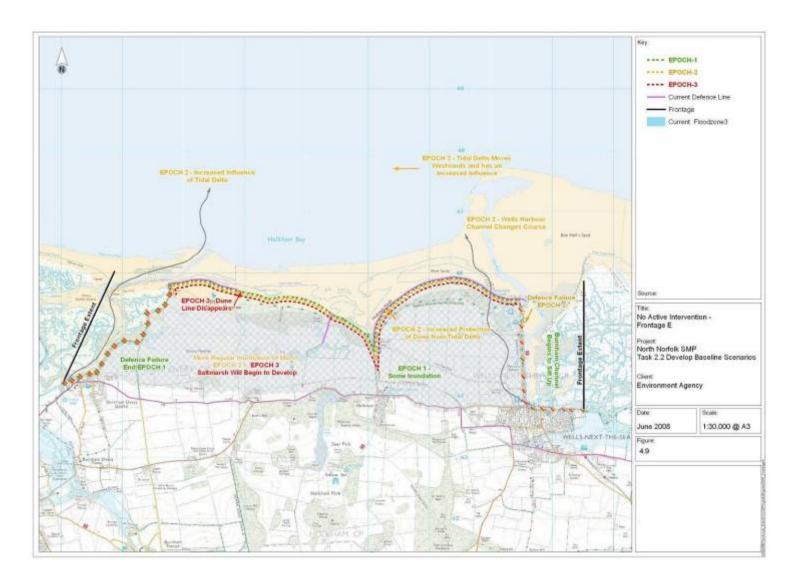
¹⁴ All management scenarios assume that the current management practices undertaken in neighbouring SMP areas will continue. The potential effect of wind farms offshore of this study frontage has been noted. However, in this assessment of baseline scenarios, it was not considered relevant to quantify these effects due to the uncertainty surrounding this issue.

¹⁵ All assessments of shoreline response have a band of uncertainty that increases for later epochs.

Epoch 1: Years 0 to 20 (2025)		Epoch 2: Years 20 to 50 (2055)		Epoch 3: Years 50 to 100 (2105)		
Defences	Natural coast	Defences	Natural coast	Defences	Natural coast	
Failure of defences to the west of frontage. Defences near Wells would remain.	Erosion of entire profile, but little beach steepening. Some inundation of the reclaimed marshes.	Total defence failure.	Reclaimed marshes would be opened up. Detached barrier island would form. Wells harbour channel changes course, moving tidal delta westwards. Tidal deltas of Wells and Burnham harbour channels increase, protecting sand dunes.	No defences would remain.	Potential for Holkham Meals/ Meols to disappear Some sedimentation behind the old dune line with associated saltmarsh formation.	

management This scenario assumes that the current policy for the frontage continues. This will usually involve maintaining defences to provide a similar level of protection to that provided at present and regularly inspecting and maintaining the defences.

Shoreline response


During epoch 1 under the WPM scenario, the reclaimed saltmarsh would remain protected by the earth embankments and the geomorphological functioning of the frontage would remain the same. The dune line (Holkham Meals/Meols) would also remain where it is now, anchored in place by the line of fir trees. There would be continued seaward movement of the offshore bars and erosion of the entire beach profile.

During epoch 2, when sea level rise accelerates significantly, there would be much more pressure on the frontage. As a result, there would need to be increasingly hard defences along the dune line to prevent natural rollback and the earth embankments would probably need to be improved. If the standard of protection provided by the man-

made and natural defences was not increased, there would be a greater likelihood of overtopping of the defences and therefore ponding on the reclaimed saltmarsh. This would lead to a need for more regular maintenance of the defences to repair and re-seal damage caused during high tide/extreme events. Seaward of the hard earth embankments, coastal squeeze would occur between rising sea levels and the fixed defence line, resulting in an overall loss of saltmarsh area. There is also the possibility that Wells harbour channel would need some works to maintain navigability.

The same shoreline responses would also be seen throughout epoch 3. During epoch 3, the cost of maintaining the existing defences and providing harder defences in place of the natural dune line is likely to be significant.

Years 0 to 20 (2025)		Years 20 to 50 (2	2055)	Years 50 to 100 (2105)		
Defences	s Natural coast	Defences	Natural coast	Defences	Natural coast	
Defences would remain.	Similar geomorphological functioning to that of the NAI scenario. Erosion of entire beach profile, with seaward movement of offshore bars.	Defences would remain. Increasing need for hard defences in place of natural sand dunes and a higher standard of protection provided by the existing earth embankments.	Significant pressure on frontage from sea level rise. Need for hard defences instead of natural sand dunes and higher defences where there are now earth embankments. Coastal squeeze in front of earth embankments. Maintenance needed to sustain navigability of Wells harbour channel.	Defences would remain, but maintenance and cost of building new defences would be significant.	Same as epoch 2.	

F3.6.6	Frontage F – Stiffkey and Warham marshes
1 3.0.0	Trontage I – Othrkey and Warnah marshes

Frontage F	– Stiffkey (and Warham) marshes	Chainage	34.4km	42.3km
Bob Hall's S	Sands to western end of Blakeney Spit.			
Section 1 -	Description			
General	This frontage covers the village of Stiffkey and includes a contin frontage is characterised by an extensive saltmarsh/sand dune exposed at low water.			
Physical	This frontage is a typical open coast dominated by a large dissip beach that transgresses naturally into saltmarsh and then into h ground behind. The marshes (Stiffkey and Warham) make up o most extensive and important intertidal marsh areas in the coun the most important attributes is that they merge with the rising g along the Stiffkey and Warham Greens forming a transitional ha elsewhere, has been lost to reclamation. The marshes are gene protected from severe wave action by the large beach, which ha slope. At the western end of the frontage Lodge marsh, formerly reclai now largely been restored to saltmarsh. The shape of the eastern end of this frontage is dominated by th Stiffkey outfall. This protects Stiffkey and the surrounding areas flooding during extreme events. Once the river has flowed out o Blakeney harbour channels and flows out to sea around the dist important interaction between this frontage and frontage G.	higher ne of the htry. One of ground abitat that, erally as a shallow imed, has he River from tidal onto the saltm	•	Stiffkey Warham Cockthorpe Binham Great Cockthorpe Binham Great Cockthorpe Binham Cockthorpe Binham Cockthorpe Binham Cockthorpe Binham Cockthorpe Binham Cockthorpe Binham Cockthorpe Binham Cockthorpe Binham Cockthorpe Binham Cockthorpe Binham Cockthorpe Binham Cockthorpe Binham Cockthorpe Cockth
Defences and man-	As discussed above, a large dissipative sand beach and establi along this frontage. The only man-made coastal defence is a sh 300 metres long) at the outfall of the River Stiffkey. There is also	nort section of	f well-vegeta	ated earth flood bank (just over
_	next-the Sea, known as Wells east bank, that protects a signific	ant area of a	rable land a	nd about 60 properties.

Chainage	34.4km	42.3km
	Chainage	Chainage 34.4km

F121

Frontage F – Stiffkey	(and warnam) marshe	15
i i o i i ago i o i i i i o j	lana manany marone	

Chainage 34.4km 42.3km

			Notes					
Currents	Av. flood	West	Current data deduced from tidal diamond N on Admiralty chart no. 108.					
	Av. ebb	East	The flow pattern over much of the rising tide is relatively strong over mid-tide and					
	Net residual	towards the west, changing to a weak flow towards the east over high water. On the ebb, the flow is strong and towards the east, reversing to a weaker flow towards the west at low water, flowing into the ebb tide from the Wash.						
Wave climate	Relatively low wave energy has been noted in this unit. The dominant waves arrive from the north east and north north east, but refraction causes the waves to approach the coast from different directions (north to north west). Along this frontage waves typically originate from 30°N. The annual 10 per cent exceedance significant wave height is between one and 1.5 metres (Futurecoast 2002). The 1:100 year wave height offshore is between six and eight metres (Anglian Water 1988).							
Accretion/ erosion	erosion of the le	ower intertida	2000 there was accretion in the upper shore (higher saltmarshes) and also significant al (sand flats) which appears to be in response to sea level rise (Environment Agency). ey, Futurecoast (Halcrow 2002) notes that the coastline is typically accreting.					

Frontage F	– Stiffkey (and War	ham) mar	shes					C	Chainage	34.4km 42.	3km		
Section 2 –	Baseline in	formatio	on (curren	t data	relevar	t to tl	he front	age)						
	Average ((myr ⁻¹ unl stated) ¹⁶	rates	Cliff/back				Intertid				Nearshore	Source		
	Location						back							
			general	crest	face	toe	shore	general	MHWS	MLWN/S	Trend			
	Average o profiles N2 N2D6							0.43	0.06	-2.87	Erosion of lower sand flats, accretion on upper saltmarsh	EA Coastal Trends Analysis (2007)		
Codimont	Stiffkey saltmarsh	es	4.03 mm	yr ⁻¹							Vertical accretion	Andrews et al (1999)		
Sediment	Overview: The north Norfolk sediment budget is positive and sediment is currently available									lable to the coast	al system.			
	Material	Coarse-		ind and	gravel	(outer	sand fl	ats, barrier	beaches	and sand				
	Sources	Externa	l Erosior	of Hol	derness	s cliffs	(fine).	coast (fine		Internal	Nearshore seabed, cliff erosion and recycling of intertidal sediments (coarse). Offshore banks (during high magnitude, low frequency events).			
	Movemen	t: There	e is a westv	vard se	diment		Loca	tion		Net drift (ource		

 16 The rates highlighted in bold are those used when determining NAI and WPM baseline scenarios (section 4).

Frontage F – Stiffkey (and Warham) marshes		Chainage	34.4km	42.3km
Section 2 – Baseline information (current data relevant to th	e frontage)			
transport pathway along the north Norfolk coast		1000)		
during low magnitude, high frequency events involving relatively small volumes of sediment. There are seasonal reversals of this direction (Evans et al 1998). During high energy surge conditions there may be a sudden increase in patterns of sediment movement, with material from the Burnham Flats being transported. This leads to changes in normal sediment pathways and delivery and moves significant amounts of sediment during single events (HR Wallingford 2002).	Stiffkey (597000E 346400N)	290 (westw	/ard)	Vincent (1979)

Frontage F – Stiffkey (and Warham) marshes

Section 3 - Geomorphology

A large dissipative sand beach protects Stiffkey marshes by effectively dissipating wave energy along this Process frontage. This means that the waves break and lose energy over a wide surf zone. The beach has a wide and description: shallow slope, with multiple bars that further dissipate energy by 'tripping' waves. Around the low water mark there Overall are a series of low bars of irregular shape that are relatively stable and are destroyed in extreme events. Stiffkey description of Meals (or Meols), located further inshore, are a more developed form of offshore bar and separate the beach from current the older and more mature marshes of Stiffkey. The saltmarshes are drained by a number of permanent channels processes: that cross the outer sand flats (for example, Cabbage Creek). The inland limit of the marshes is generally marked sources, by a relict cliff line (or raised beach deposit) in the form of a gravel bank running between Cley and Hunstanton. transport and The headland of Wells harbour (Lodge marsh, western edge of frontage), is a complex feature of shingle and sand sinks ridges topped by dunes. This is a normal offshore bar that has been 'bent' due to littoral drift in both south east and south west directions.

Past development: Patterns of

change

The outer marshes at Stiffkey have undergone episodes of advance in the 1950s and 1960s, but erosion and retreat since the 1970s as a result of sea level rise.

Recent trends:

There has been no recent significant evidence of erosion of the Stiffkey Meals/Meols, indicating that the supply of sediment is sufficient to maintain the existing shoreline. There has also been no evidence of accretion, indicating that there is not enough sediment to allow the shoreline to prograde or that sea level rise is now allowing accretion to occur. More recent EA monitoring results suggest that the sand flats are eroding as a result of rising sea level and the saltmarshes are continuing to experience vertical erosion. This would lead to a steeper profile overall. Future evolution (unconstrained):

The whole profile would probably continue to steepen due to sea level rise. In the future there may be erosion of the saltmarsh edge due to squeeze of the saltmarsh area between the rising sea level and the higher ground inland. Under these circumstances the whole profile would shift towards land, including the offshore bars and the sand beach. The upper saltmarshes are likely to continue to accrete until the rate of sea level rise overtakes the

42.3km

34.4km

Chainage

Frontage F – St	tiffkey (and Warham) marshes		Chainag	je 34.4km 4	12.3km		
	rate of accretion.						
Dependency: Factors affecting the evolution of the frontage	Control and sensitivities Sea level rise	Control features Relict cliff line	Significance Primary	Dependence Permanent	Chainage -		
the frontage both internally and externally	Internal interaction External interaction						
	Sea level / climate change For recent Defra (2006) guidan	ce on sea level rise c	due to climate cha	nge, see section	1.4 in the main report.		
Influence: Factors that may influence evolution of other areas	, 			-			

Frontage F – Stiffkey (and Warham) marshes

Chainage: 34.4km 42.3km

Section 4 – Baseline management scenarios^{17,18}

No active Scenario description

intervention This scenario assumes that defences are no longer maintained and will therefore fail over time. Exact timing of defence failure cannot be deduced. However, an epoch of failure can be determined, as described in the 'Assessment of coastal defences' report.

Shoreline response

Initially, shoreline response is likely to be similar to that seen recently. There would be a continued trend of erosion of the lower sandflats, but vertical accretion of the upper saltmarsh in response to increasing sea levels. The whole system would continue to roll back towards land.

Into epoch 2, the small number of defences near the River Stiffkey outfall and to the east of Wells-next-the-Sea would have failed. This would cause local inundation of some back-shore areas to the east of Wells. The River Stiffkey outfall would also follow a more meandering course and there would be some local flooding upstream of the failed outfall during high tides and surge events. The new course of the outfall may enhance the effects of the Blakeney harbour channel on the development of the distal end of the spit. During epoch 2 there would be a similar trend as in epoch 1, with erosion of the lower sandflats, but continued vertical accretion along the upper saltmarsh. The whole system would also continue to retreat towards land. By the end of epoch 2, the reduction in total saltmarsh area would be increasingly apparent.

By epoch 3, the predicted rate of sea level rise is likely to outpace sedimentation along the saltmarsh and the saltmarshes would effectively be swamped during a normal high tide. The whole system would continue to move

¹⁷ All management scenarios assume that the current management practices undertaken in neighbouring SMP areas will continue. The potential effect of wind farms offshore of this study frontage has been noted. However, in this assessment of baseline scenarios, it was not considered relevant to quantify these effects due to the uncertainty surrounding this issue.

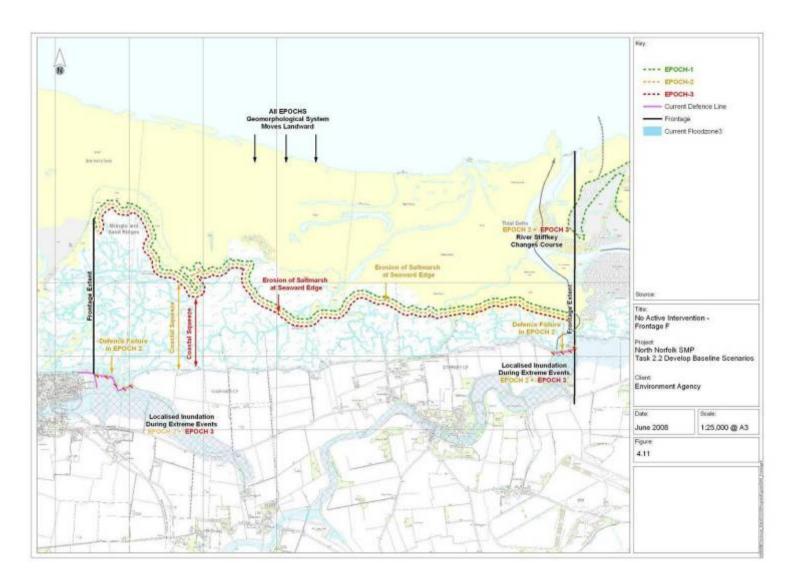
¹⁸ All assessments of shoreline response have a band of uncertainty that increases for later epochs.

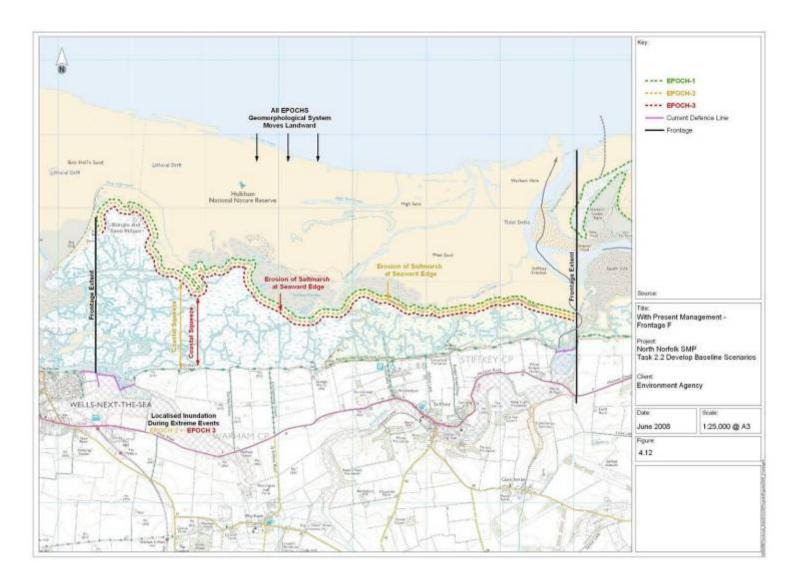
towards land, with coastal squeeze continuing between the rising sea levels and the relict cliff line.

Rates of erosion for all epochs might be expected to be directly associated with rate of sea level rise and beach slope. The following table calculates the erosion rate by multiplying the rate of sea level rise by the beach slope (a simplification of the Brunn rule):

		Epoch	(Sea level rise (myr ⁻¹)	slope	Erosion rate (myr ⁻¹)	
		•	to 2025)	0.004	1:20	0.08	
		•	to 2055)	0.0085	1:20	0.17	
		•	to 2085)	0.012	1:20	0.24	
		3 (2085	to 2105)	0.015	1:20	0.30	
Epoch 1:	Years 0 to 20 (2	2025)	Epoch 2:	Years 20 to 50	(2055)	Epoch 3: Ye	ears 50 to 100 (2105)
Defences	Natural coast		Defences	Natural coas	t	Defences	Natural coast
Defences would remain.	Continued ero the lower sand but vertical act across the upp saltmarsh due level rise. The geomorpholog system will roll towards land.	Iflats, cretion ber to sea entire jical	Defences would have failed.	Continued rollback of the system similar to epoch 1. Change in course of River Stiffkey outfall, with local flooding upstream. Also some local flooding behind Wells east bank.		No defences	Sea level rise would outpace sedimentation, halting accretion over the saltmarsh. The whole system would continue to move towards land and coastal squeeze would occur.

With present Scenario description


management (WPM) This scenario assumes that the current policy for the frontage continues. This will usually involve maintaining defences to provide a similar level of protection to that provided at present and regularly inspecting and maintaining the defences.


Shoreline response

This scenario would effectively be the same as for the NAI scenario. However, the small number of defences would be maintained. This is not likely to affect the overall evolution of the shoreline along this frontage.

Rates of erosion for all epochs will be as with the NAI scenario.

Epoch 1:	Years 0 to 20 (2025)	Epoch 2: Ye	ears 20 to 50 (2055)	Epoch 3: Y	ears 50 to 100 (2105)
Defences	Natural coast	Defences	Natural coast	Defences	Natural coast
Defences would remain.	Continued erosion of the lower sandflats, but vertical accretion across the upper saltmarsh due to sea level rise. The entire geomorphological system would roll back towards land.	Defences would remain.	Continued rollback of the system similar to epoch 1.	Defences would remain.	Sea level rise would outpace sedimentation, halting accretion over the saltmarsh. The whole system would continue to move towards land and coastal squeeze would occur.

F3.6.7 Frontage G – Blakeney Spit

Frontage (G – Blakeney Spit	Chainage	42.3km	49.5km
Western ex	tent of Blakeney Spit to Blakeney Eye.			
Section 1	- Description			
General	This frontage covers the hamlet of Morston and the large village spit that is also a National Nature Reserve. There are a large nu that are highly sought after for recreational purposes (canoeing,	umber of salt		v
Physical	The general orientation of Blakeney Point is towards the west nor The currently active part of Blakeney is within this frontage and extend significantly into frontage H. The spit itself consists of a recurved features that indicate the former extent of the spit, nam Marrams, the Hood and the Headland. Between the limbs of the and inland of the spit itself, saltmarshes are developing in the sh afforded by the ridges and spit. This frontage also contains Blak marshes. These freshwater marshes were formed in the 17 th cel consist of around 170 hectares of freshwater grazing marshes, we areas of reedbed and numerous drainage ditches. The freshwate are protected from tidal inundation to the west, north and east by embankments and to the south by higher ground.	does not number of nely the recurves nelter seney Fresh ntury and with small ser marshes	Al49 Al49 Alangh Cockthorpe	Blakeney Point G Blakeney Blakene
	The lower tidal River Glaven flows out onto the saltmarsh behind river has gradually been pushed southwards by the natural rollb way out from behind the spit along the Cley channel, which then	ack of Blake	ney Point. T	he River Glaven meanders its

Frontage G	i – Blakeney Spit	Chainage	42.3km	49.5km	
Defences and man- made features	There is a man-made defence line running in a west to east dir This then runs north and then north east around to Blakeney E flood bank. These raised earth embankments protect the fresh Apart from this, there are no other formal man-made defence I north west to south east acts as a natural defence. The ridge it since been left to regain its natural profile. Realignment of the result of repeated blockages occurring at the downstream end causing damage to the fresh marshes as saline flood water co upstream of the tidal sluice in Cley and Wiveton. The previous dredging of the channel, was also considered unsustainable. T for around 200 years, at which time rollback of the spit is likely	ye. This defer water marsh a ines, although self was re-pr tidal River Gla of the channe uld not be rapi method of ma The recent real	the line cons at Blakeney the shingle ofiled up to ven was als due to the idly evacuat inagement, lignment wil	sists of a well-veg Freshes from tida spit and ridge sy 2005 by bulldoze to carried out in 2 rollback of the sp ed, as well as rive which involved re I provide continue	petated earth al inundation. stem running rs, but has 005 as a bit. This was er flooding gular

Frontage G – Blakeney Spit

Chainage	42.3km	49.5km
----------	--------	--------

nd vater			LAT	MLWS	MLWN	MSL	N	IHWN	MHWS	НАТ	Spring range	Neap range	Correction CD/ODN
evels	Blakeney		N/A	N/A	N/A	N/A	1	.20	2.60	N/A		•	
nOD <u>.</u>)		S	ource/n	nethod		1:1	1:10	1:25	1:50	1:100	1:200	1:500	1:1000
-	Blakeney			skoning (2	2007)	3.67	4.24	4.47	4.64	4.82	4.99	5.22	5.39
em	Notes:												
OD rrent	Av. floodWest Current data deduced from tidal diamond N on Admiralty chart no. 108.Av. ebbEastCurrent data deduced from tidal diamond N on Admiralty chart no. 108. The flow pattern over much of the rising tide is relatively strong over mid-tide and towards the west, changing to a weak flow towards the east over high water. On the ebb, the flow is strong and towards the east, reversing to a weaker flow towards the west at low water, flowing into the ebbNet residuelNorth												
	north east, l this frontage	out re e wav metr	fraction es typic	causes the ally origin	ne waves ate from	to appi 30°N. T	roach t he an	he coas nual 10	t from diff per cent e	erent dir exceedar	ections (nace signific	orth to nor cant wave	east and north th west). Along height is between metres (Anglian
-	Notes:												
e at													

Frontage	e G – Blaker	ney Spit							Chainage	e 42.	3km	49.5	ĸm
Section 2 – Baseline information (current data relevant to the frontage)													
е	Average rates (myr ⁻¹) unless stated) ¹⁹		Cliff/backshore feature Intertion			dal	Nearshore						
	Location	-					bac k						Source
Accreti on/			genera I	cres t	fac e	to e	shor e	gene ral	MHW S N	MLWS	Trend		
erosion	Spit (distal end) 1586 to 1698							18.00			Advar	nce	Cozens Hardy (1929)
	Spit (distal end)							3.50			Accre westw		CHaMP (2003)
	Spit							-1.00			Landv move		Hardy (1964)
	Average of N2C2 to N2	EA profiles 2C4						-3.25			Erosic	on	EA Coastal Trends Analysis (2007)
Overview: The north Norfolk sediment budge				v ,				· · ·					
Blakeney Spit is made up of sand, with the size of gravel reducing from east to west. There is a hMaterialContent west of Cley coastguard station. Sand forms the distal end of the spit, indicating a long-teComply of sand, with the size of gravel reducing from east to west. There is a hContent west of Cley coastguard station. Sand forms the distal end of the spit, indicating a long-teComply of sand, with the size of gravel reducing from east to west. There is a hContent west of Cley coastguard station. Sand forms the distal end of the spit, indicating a long-teComply of sand, addiment to the boodlond						•							
						a long-term under-							
supply of coarse-grained sediment to the headland.SourcesExternalErosion of Holderness cliffs (fine).					Intern	ernal Nearshore seabed, cliff erosion and recycling							
	Erosion of cliffs along north Norfolk				Intern	of intertidal sediments (coarse).							
			ist (fine).	st (fine). Offsho					Offshore banks (during high magnitude, low frequency events).				

Frontage	e G – Blakeney Spit		Chainage 42.3km 49.5km				
Section	2 – Baseline information (current data relevant to	the frontag	je)				
Sedime nt							
	Movement: There is a westward sediment	Location	Net drift (m ³ /yr x 1000)	Source			
	transport pathway along the north Norfolk coast during low magnitude, high frequency events	Blakeney Point	40 to 60 (westward)	Potential sand transport (Vincent 1979)			
	involving relatively small volumes of sediment. There are seasonal reversals in this direction	Blakeney Point	20 to 40 (westward)	Shingle longshore transport (Vincent 1979)			
	(Evans et al 1998). During high energy surge conditions there may be a sudden increase in patterns of sediment movement, with material	Blakeney (600000E 347000N)	350 (westward)	Onyett & Simmonds (1983)			
	om the Burnham Flats being transported. This ads to changes in normal sediment pathways and delivery and moves significant amounts of ediment during single events (HR Wallingford 002). There is a strong onshore-offshore ediment transport from the gravel ridge under the ction of storm waves from the north east. This takes it possible for sand to be carried more than the kilometre offshore to the east-west orientated and belts covered by sand waves known as lakeney Overfalls and the Pollard. The altmarshes behind the spit are important sinks for	Blakeney (602500E 346300N)	600 (westward)	Vincent (1979)			

¹⁹ The rates highlighted in bold are the ones used when determining NAI and WPM baseline scenarios (section 4). In this case, despite the rate of -1.00myr⁻¹ being stated in 1964, it is the generally accepted rate of shingle ridge rollback along this frontage. The more recent EA monitoring data are also likely to be skewed by the re-profiling activities that occurred up to 2006.

Frontage G – Blakeney Spit

Chainage 42.3km 49.5km

Section 3 - Geomorphology

Process description: Overall description of current processes: sources, transport and sinks	The general orientation of the spit is towards the dominant incident wave direction (from the north east). Its shape suggests it is a traditional spit feature growing towards the west. This is also reinforced by the fact that the course of the River Glaven has been diverted due to the apparent movement of the spit towards the west. The distal end of the spit has also been rolling back over the saltmarshes. The spit is essentially a relict feature constructed from material deposited during the last glaciation. The distal end of the spit appears to develop as a result of large sand bars that move eastwards from Stiffkey across Blakeney channel and then weld themselves to the distal end. As a result, Blakeney Point grows towards the west but is fed by an eastward transport of material. The recurves may therefore reflect this pulsing of sediment feed and shaping of wave refraction along the Blakeney channel. The seaward side of the spit has a steep sloping beach that means it is subject to greater wave energy than the extensive gently-inclined intertidal flats further to the west.
Patterns of change	Past development: Westward spit growth was in response to the prevailing storm waves that approach the spit obliquely from the north east. Bulldozing activities to protect Cley (eastern end of the frontage), and a reduced sediment supply brought about by cliff stabilisation measures in the next SMP area, has meant that the alignment of the spit has been artificially altered. The distal end of the spit has also been rolling back over the saltmarshes. Sediment has been added to the distal end by pulses of sand supplied from the west supplementing a persistent, but probably reducing, westward movement of sand by littoral drift along the seaward limb of the spit. As only the spit itself was free to move, it had the potential to become misaligned with the shingle ridge over time. Recent trends:

Now that bulldozing activities have stopped, it is unlikely that the ridge will become misaligned with the spit. Continued rollback of the distal end of the spit has occurred, causing a reduction in the tidal prism of the River Glaven. The dunes of Blakeney are experiencing erosion as the barriers roll towards land. Unlike gravel barriers, the dunes do not reform by rollover processes and the dune ridges are progressively narrowing as the barriers

	move towards land (CHaMP 2003).							
Dependency: Factors	Future evolution (unconstrained): There are unlikely to be significant changes in longshore shape due to drift effects in frontage H. Continued rollback of the distal end of the spit may cause a greater reduction in the tidal prism, leading to a narrowing of the mouth of the River Glaven and Blakeney channel due to increased sedimentation. This could cause a change in sediment transport patterns in the area, causing a decrease in the pulse feed. Vertical accretion would continue across the saltmarshes in line with sea level rise due to the good supply of fine-grained sediment. Control and sensitivities Control features Significance Dependence Dependence Chainage							
affecting the evolution of	This frontage is anchored by the hard Weybourne cliffs to the east (SMP 6). The frontage is very sensitive to the dominant wave climate and to storm conditions, as well as the presence of a gap between the Blakeney Overfalls and Sheringham Shoal. Behaviour of this frontage is sensitive to the movement of frontage H. The extent of natural rollback of the shingle ridge is limited by the higher ground to the south (located roughly at the A149 coast road).	Shingle ridge	Primary	Transient	49.5 to 58.4			
the frontage both internally and externally		Course of tidal River Glaven	Secondary	Transient	49.5 to 53.5			
	Internal interaction The nature of the Salthouse-Cley and Blakeney Freshes marshes is controlled by the ability of the tidal River Glaven to drain saline flood waters from the marshes. If the channel becomes blocked as a result of rollback of the shingle ridge, this will compromise the ability of the river to drain saline flood water.	External interaction The sediment transport pathways along this frontage do not influence the growth of Blakeney Spit as it is fed by eastward pulsing sediment to the west of its distal end.						

	Sea level / climate change
	For recent Defra (2006) guidance on sea level rise due to climate change, see section 1.4 in the main report.
Influence: Factors that may influence evolution of other areas	If the tidal River Glaven becomes blocked by rollback of the shingle ridge, the fresh water outfalling through the tidal sluice at Cley will attempt to find an alternative, natural route to the North Sea. The surrounding area (including frontage G) would become brackish, with saline water inundation only occurring on a breach of the ridge/spit.

Frontage	G –	Blakenev	Snit

Chainage: 42.3km 49.5km

Section 4 – Baseline management scenarios^{20,21}

No active Scenario description

intervention This scenario assumes that defences are no longer maintained and will therefore fail over time. Exact timing of defence failure cannot be deduced. However, an epoch of failure can be determined, as described in the 'Assessment of coastal defences' report.

Shoreline response

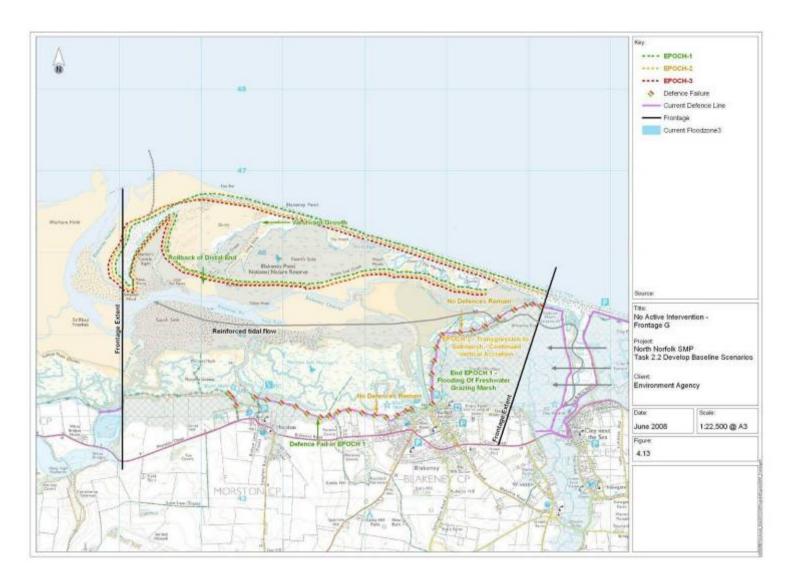
There are unlikely to be significant changes in the shape of the shoreline due to drift effects in frontage G under the NAI scenario. Initially, continued rollback of the distal end of the spit (at a rate of about one metre a year) and westward growth (at a rate of about 3.5 metres a year) may cause a further reduction in the tidal prism as the whole system continues to roll back. This rollback would cause a narrowing of the mouth of the River Glaven and Blakeney channel and would promote sedimentation behind the spit. This could cause a change in sediment transport patterns in the area, causing a decrease in the pulse feed.

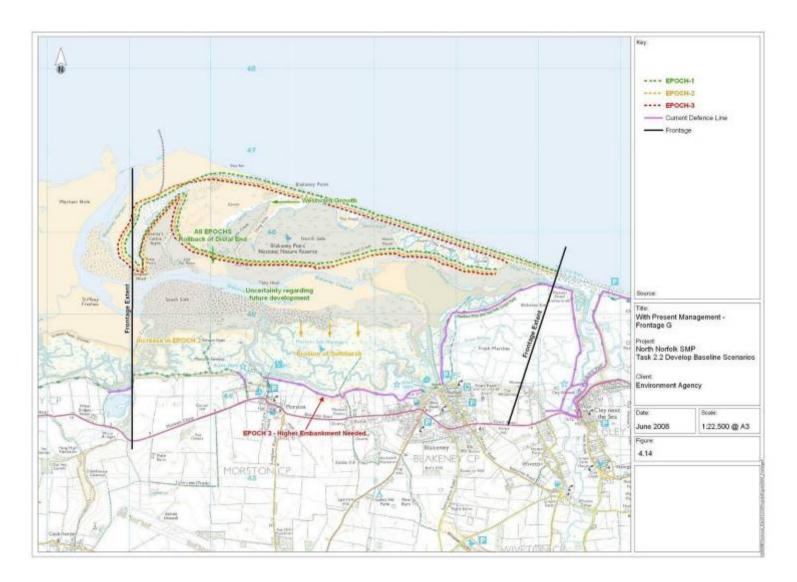
Following failure of the defences by the end of epoch 1 (and towards the beginning of epoch 2 for a couple of defences), there would be flooding of a significant area of reclaimed freshwater marsh (Blakeney Fresh marshes). These previously freshwater marshes would gradually transgress to brackish areas and then to saltmarshes. Defence failure would cause a significant change in the geomorphology and ecological characteristics of this frontage. It is likely that the course of the tidal River Glaven, particularly near Blakeney chapel at the northern edge of Blakeney Eye (towards the east of this frontage), would alter dramatically to a more natural position. There would also be continued rollback of the spit towards land during this epoch, but a reduction in its westward movement due to a reduced pulse feed mechanism.

²⁰ All management scenarios assume that the current management practices undertaken in neighbouring SMP areas will continue. The potential effect of wind farms offshore of this study frontage has been noted. However, within this assessment of baseline scenarios, it was not considered relevant to quantify these effects due to the uncertainty surrounding this issue.

²¹ All assessments of shoreline response have a band of uncertainty that increases for later epochs.

Frontage G – Blakeney Spit	Chainage: 42.3km	1 49.5km
Into epoch 3, sea level rise could overtake sedime	•	
tidal exchange behind the spit itself. As a result, th become misaligned with the shingle ridge. This wo		
Scolt Head Island. The sandy barrier island would	begin to encroach on the exis	ting marsh, further narrowing the
Blakeney channel and reducing the tidal prism. Th formed saltmarsh at Blakeney Freshes) would cor good supply of fine-grained sediment.		5
Enoch 1: Voors 0 to 20 (2025) Enoch 2: Vo	ars 20 to 50 (2055) Epoc	2: Yoars 50 to 100 (2105)


Epoch 1: Years 0 to 20 (2025)		Epoch 2: Y	'ears 20 to 50 (2055)	Epoch 3: Years 50 to 100 (2105)		
Defences	Natural coast	Defences	Natural coast	Defences	Natural coast	
Most of the defences would have failed by the end of epoch 1.	Continued rollback of the distal end of the spit (one metre a year) and westward growth (3.5 metres a year), narrowing the mouth of the River Glaven and Blakeney channel. Possible decrease in pulse feed to the distal end of the spit.	No defences would remain.	Flooding of previously freshwater marshes after defence failure would increase the tidal exchange behind the spit. Marshes would gradually become saltmarshes. Accretion along marshes could still occur in line with sea level rise.	No defences would remain.	Sea level rise is likely to outpace sedimentation further increasing tidal exchange behind the spit. The distal end is likely to become a detached barrier island. This new barrier island would move back gradually, encroaching on the existing saltmarsh, leading to coastal squeeze.	


With present Scenario description

management (WPM) This scenario assumes that the current policy for the frontage continues. This will usually involve maintaining defences to give a similar level of protection to that provided at present and regularly inspecting and maintaining the defences.

Frontage G – Blakeney Spit	Chainage:	42.3km	49.5km
Shoreline response Initially, the development of the frontage under this scenari would be westward growth of the spit (at around 3.5 metres spit (at a rate of about one metre a year). This would cause narrowing of the mouth of the River Glaven and Blakeney of the spit. This could cause a change in sediment transport p feed.	s a year) and e a further red channel and p	continued r uction in th romoting in	ollback of the distal end of the e tidal prism, leading to a acreased sedimentation behind
However, into epoch 2 with defences still present, there we and rollback of the distal end, with an associated reduction Increases in sea level rise would allow more water to enter continue in line with this increase. There is likely to be eros the total area of saltmarsh. As the whole system continues Glaven/Blakeney channel is also likely to become squeeze reduction in the size of boat that can access Blakeney thro	in tidal prism the area beh sion of the salt to roll back, c ed, reducing its	and sedime ind the spit, marsh edge constrained s capacity a	entation behind the spit. , but accretion is likely to e and a gradual reduction in by the hard defences the
By epoch 3, the effects of the coastal squeeze occurring be would have closed the Glaven/Blakeney channel and caus need to be a higher standard of protection to the earth emb edge of the spit begins to move closer to the embankments	ed a consider bankments as	able amour	nt of saltmarsh loss. There will

Frontage G – Blakeney S	pit		Chainage: 4	2.3km 4	9.5km
Epoch 1 Defences	Years 0 to 20 (2025)	Epoch 2: ` Defences	Years 20 to 50 (2055) Natural coast	Epoch 3: Defences	Years 50 to 100 (2105) Natural coast
Defences would remain.	Continued rollback of the distal end of the spit (one metre a year) and westward growth (3.5 metres a year), narrowing the mouth of the River Glaven and Blakeney channel. Possible decrease in pulse feed to the distal end of the spit.	Defences would remain.	Continued rollback of the distal end of the spit leading to further narrowing of the River Glaven and Blakeney channel. Coastal squeeze would occur between the spit and the fixed embankments, causing erosion of the saltmarsh edge (overall loss of saltmarsh).	Defences would remain.	Coastal squeeze would have closed the River Glaven/ Blakeney channel (threatening existence of Blakeney as a coastal town) and caused a considerable amount of saltmarsh loss. Need for higher embankments that protect the freshwater marshes and Blakeney itself.

F3.6.8	Frontage H – Cley and Salthouse
--------	---------------------------------

Frontage H	I – Cley and Salthouse	Chainage	49.5km	58.4km
Blakeney E	ye to Kelling Hard (eastern boundary of SMP study area).			
Section 1 -	- Description			
General	This frontage covers the villages of Cley-next-the-Sea and Salth		•	
	located between the shingle ridge and A149 coast road. This fro			
	(frontage G) due to the similar nature of the area behind the shi	• •	d the reliand	ce on continued drainage of the
	tidal River Glaven to preserve the natural environment at these	locations.		
	This section of Blakeney between Kelling Hard and Blakeney E			
Physical	glacial feature. In front of the ridge there is a shingle beach with		ney Point	
5	profile and few bar features. These beaches generally reflect the	e waves		Port. H
	back offshore due to their steep berm face.			Norfolk Coast and
			akeney	Step 10 ast Path
	There are two internationally recognised freshwater marshes al	ong this		the Sea
	frontage. Towards the western edge is Blakeney Freshes, forme	ed in the	134	Salthouse Sim A A
	17 th century by enclosing the natural coastal saltmarsh with early	th	Wiveton	Newgate Kelling
	embankments. This area now provides 168 hectares of freshwa	ater grazing	B1156	
	marsh, small areas of reedbed and numerous drainage ditches.		Glandford	Sheringham
	earth embankments provide tidal protection to the west, north a			High Kelling 86
	with higher ground providing protection to the south. Also, the C		am	Bodham
	Salthouse marshes stretch along most of this frontage. They co			
	hectares of freshwater grazing marshes, with reedbeds and sali		owards the r	ear of the ridge. These
	marshes are bound to the west by an earth embankment (Cley	-		
	by the shingle ridge and to the east and south by higher ground			-
	is fed by springs to the east.			
	וא ובע אי איווועט נט נווב במטנ.			

Frontage H	- Cley and Salthouse	Chainage	49.5km	58.4km
	The River Glaven outfalls to the west of this frontage through a (A149). As the spit has continued to roll back, the course of the continued drainage of the freshwater marshes and the fluvial results.	e River Glave	n has been i	
Defences and man- made features	A vegetated earth flood bank runs roughly northwards from Cle east bank, running north to south from the car park at Walsey marshes into two separate flood compartments. Apart from this the shingle ridge running north west to south east between Bla and was re-profiled by bulldozers up to 2005. This has now be of the tidal River Glaven was also carried out in 2005 as a resu end of the channel due to the rollback of the spit. This was cau could not be quickly evacuated. There was also river flooding to previous management, which involved regular dredging of the realignment will provide continued drainage for around 200 year channel again.	Hills to the shi s, there are no keney Eye an en left to refor ult of repeated using damage upstream of the channel, was	ngle ridge, d other man- d Kelling Ha m back to its blockages d to the fresh e tidal sluice also deemed	livides the Cley-Salthouse made defence lines, although and acts as a natural defence s natural profile. Realignment occurring at the downstream marshes as saline flood water e in Cley and Wiveton. The d unsustainable. The recent

Frontage	H – Cley and	Salth	ouse					Cha	inage	49.5km	58.4km		
	2 – Baseline ir	nforma	ation (cu	rrent dat	a rele	vant to th	e frontag	ge)					
Tide and water		LAT	MLWS	MLWN	MSL	MHWN	MHWS		НАТ	Spring range	Neap range	Correc CD/OD	
levels	Blakeney	N/A	N/A	N/A	N/A	1.20	2.60		N/A				
(mODN	(mODN										1:500	1:1000	
)	Weybourne			ing (2007	')	3.32	3.86	4.07	4.23	4.39	4.56	4.77	4.93
Extrem	Notes:	110 / 0.			/	0.02							
es	Notes												
(mODN	Av. flood		Cu	rent data	dedu	ced from t	idal diam	ond N o	n Admir	alty chart no	. 108.		
)	Av. ebb									ely strong o			
Current	Net residual		and	vest, changing to a weak flow towards the east over high water. On the ebb, the flow is strong and towards the east, reversing to a weaker flow towards the west at low water, flowing into the bb tide from the Wash.								•	
S	The dominant incident wave direction is from the north east. The dominant waves arrive from the north east and north north east, but refraction causes the waves to approach the coast from different directions (north to north west). Along this frontage waves typically originate from 30°N. The annual 10 per cent exceedance significant wave height is between one and 1.5 metres (Futurecoast 2002). The 1:100 year wave height is between six and eight metres (Anglian Water 1988).												
Wave climate	N2C7 and N2 has been a p overtopping c	2B3. Th rogam	nis re-pro me of dra	filing was ainage im	s stopp prover	bed in 2000 ments and	6 and the channel	ridge h realignr	as now nent une	been left to dertaken at (regain its na Cley marshe	atural pro	ofile. There

Frontage	H – Cley a	and Salthous	e					C	hain	nage	49.5km	58.4km	
Section 2	2 – Baselin	e informatio	n (currer	nt data	releva	nt to	the frontag	e)					
	Average i unless st	rates (myr⁻¹) ated) ²²	Cliff/ba	ackshor	e featu	re	Intertidal					Nearshore	Source
	Location		gene	cres	fac	to	backsho	ger	ne	MHW			
			ral	t	е	е	re	ral		S	MLWS	Trend	
	Shingle ric	dge of EA profiles						-1.0	00			Erosion	Hardy (1964) EA Coastal
	N2C7 to N							-0.5	58			Erosion	Trends Analysis (2007)
	Material	The ridge is	comprise	d of shi	ngle w	hich	is largely for	ssil m	nater	rial.			
Accreti	Sources					•	iffs (fine). Internal Nearshore seabed, cliff eros						
on/				cliffs al	ong no	orth N	lorfolk coast						diments (coarse).
erosion		(fine).									ncy events).	high magnitude,
		nt: There is a pathway alon				Loc	Location Net drift (m ³ /yr x 1000)			Source	Source		
	transport pathway along the north Norfolk coast during low magnitude, high frequency events involving relatively small volumes of sediment. There are seasonal reversals in				ybourne to e Blakeney nt		10 to	o 15 (w	estward)	•	979). Refers to me volume for		
	this direction (Evans et al 1998). During high												
Sedime													
nt	sudden increase in patterns of sediment												
		t, with materia			am								
	Flats bein	g transported	. This lea	ds to									

²² The rate highlighted in bold is the one used when determining NAI and WPM baseline scenarios (section 4). In this case, despite the rate of -1.00myr⁻¹ being stated in 1964, it is the generally accepted rate of shingle ridge rollback along this frontage. The more recent EA monitoring data are also likely to be skewed by the re-profiling activities that occurred up to 2006.

Frontage H – Cley and Salthouse		Chainage	49.5km	58.4km
Section 2 – Baseline information (current data relevan	t to the frontage)			_
changes in normal sediment pathways and				
delivery and moves signficant amounts of				
sediment during single events (HR				
Wallingford 2002). There is a strong onshore-				
offshore sediment transport mechanism from				
the gravel ridge under the action of storm				
waves from the north east, with the potential				
for sand to be carried offshore more than one				
kilometre to the east-west orientated sand				
belts covered by sand waves known as				
Blakeney Overfalls and the Pollard.				

Chainage 49.5km 58.4km

Section 3 - Geomorphology

 Process description: Overall description of current processes: sources, transport and 	The shingle ridge that stretches along the whole of this frontage is a post-glacial feature consisting of glacial till, separated from the rising ground of the Salthouse-Weybourne scarp by a valley filled with Holocene alluvium. Shingle deposited during the last glaciation would have been washed out from the sea bed and accreted on the beach. It has been suggested that the position of accretion was selective due to the wave refraction pattern. The combination of sea level, offshore bathymetry and wave climate caused preferential accretion in the Weybourne area (to the east of this frontage). As a result of this model, there is thought to be no significant source of shingle active today. The shingle along this frontage has formed into a beach that reflects wave energy back offshore by the steep face of the berm.
sinks	There is a significant offshore feature along this frontage, Sheringham Shoals, which consists of gravelly sand.
	The tidal River Glaven outfalls to the west of this frontage through a tidal sluice located at the main coast road (A149). As a result of shingle ridge rollback, the course of the river has been gradually forced inland.
Patterns of	Past development:
change	In the past, the eastern end of the spit (that is, the western edge of this frontage) has been maintained by bulldozing. This acted to halt the natural rollback of the shingle ridge and caused the active part of Blakeney Spit to become misaligned with the ridge. Recent trends:
	Bulldozing activity has now stopped and, as a result, the western edge of this frontage has restarted a trend of rollback inland over the saltmarsh. The shingle ridge is now becoming realigned to Blakeney Spit again.
	Future evolution (unconstrained):
	There are likely to be no changes in the drift effects along this frontage. The most important profile changes will be due to extreme events, as shingle ridges usually react to high-magnitude low-frequency events by rolling back. As the ridge continues to move inland, the rate of movement may increase significantly. The rollback towards land would continue until it is in balance with the natural energy environment. The shingle ridge would gradually re-

Frontage H – C	ley and Salthouse	Chainage	49.5km 58	.4km					
	profile to a low barrier that would be prone to occasional already seaward of its natural position, initial rollback of barrier. The marshes of Cley and Salthouse would chan	the shingle ridge	is likely to cau	se some breakd					
Dependency: Factors	Control and sensitivities	Control features	Significance	Dependence	Chainage				
affecting the evolution of	This frontage is anchored by the hard Weybourne cliffs to the east (SMP 6). The frontage is extremely	Shingle ridge	Primary	Transient	49.5 to 58.4				
the frontage	sensitive to the dominant wave climate and to storm conditions. Behaviour of this frontage is sensitive to	Course of tidal River Glaven	Secondary	Transient	49.5 to 53.5				
internally and externally	the movement of frontage G. The extent of natural rollback of the shingle ridge is limited by the higher ground to the south (located roughly at the A149 coast road).	Weybourne cliffs	Primary	Fixed	Outside study area				
	Internal interaction	External interaction							
	The nature of the Salthouse-Cley and Blakeney Fresh marshes is controlled by the ability of the tidal River Glaven to drain saline flood waters from the marshes. If the channel becomes blocked as a result of rollback of the shingle ridge, this will compromise the ability of the river to drain saline flood water.	The sediment transport pathways along this frontage do not influence the growth of Blakeney Spit as it is fed by eastward pulsing sediment to the west of its distal end.							
	Sea level / climate change For recent Defra (2006) guidance on sea level rise due t	to climate change	e, see section 1	.4 in the main r	eport .				
Influence: Factors that may influence evolution of	If the tidal River Glaven becomes blocked by rollback of tidal sluice at Cley will try to find an alternative, natural r frontage G) would become brackish, with saline water in	the shingle ridge oute to the North	e, the fresh wate Sea. The surro	er outfalling thro ounding area (in	ugh the cluding				

Chainage 49.5km 58.4km

other areas

Chainage: 49.5km 58.4km

Section 4 – Baseline management scenarios^{23,24}

No active Scenario description

intervention This scenario assumes that defences are no longer maintained and will therefore fail over time. Exact timing of defence failure cannot be deduced. However, an epoch of failure can be determined, as described in the 'Assessment of coastal defences' report.

Shoreline response

The development of this frontage under a scenario of NAI is likely to be similar to the unconstrained scenario discussed above in section 3. There are a number of earth embankments in the western section of this frontage (Cley west bank and Cley east bank) that act to maintain the Cley-Salthouse marshes as freshwater grazing marshes with reedbed and saline lagoons. Also, another embankment runs along the west side of the tidal River Glaven and encloses the freshwater grazing marsh known as Blakeney Freshes. There is also a tidal outfall sluice on the River Glaven (located at the A149) that protects Cley-next-the-Sea and Wiveton from tidal flooding. The shingle ridge itself is not protected from the natural rollback process.

The earth embankments are predicted to fail towards the end of epoch 1 under this scenario. During epoch 1, there would be continued rollback of the shingle ridge during high-magnitude low-frequency extreme events. However, due to the lack of shingle available to feed a rebuild of the ridge at a more inland location, it is likely to form a lower barrier with significantly lower sections where overwash has been focused. However, the management of the freshwater marshes (Cley-Salthouse flood management scheme) would continue to discharge saline flood water effectively back into the upper Glaven estuary (the tidal River Glaven) following a breach. This type of process is already taking place. For example, during the surge event of 9 November 2007, there was

²³ All management scenarios assume that the current management practices undertaken in neighbouring SMP areas will continue. The potential effect of wind farms offshore of this study frontage has been noted. However, in this assessment of baseline scenarios it has not been considered relevant to quantify these effects due to the uncertainty surrounding this issue.

²⁴ All assessments of shoreline response have a band of uncertainty that increases for later epochs.

Frontage H – Cley and Salthouse	Chainage: 49.5km 58.4km
the geomorphology and ecological characteristics of the in more tidal water behind the shingle ridge and increase Salthouse freshwater grazing marshes. It is likely that th	he course of the tidal River Glaven, particularly near would change dramatically to a more natural position. The e of movement could increase significantly until it is in er would also become increasingly susceptible to more harshes. Combined with the increased tidal exchange er grazing marshes would see a transgression to
Following failure of the tidal sluice (predicted during eponext-the-Sea and Wiveton. The extent of this tidal flooding	och 2), there is likely to be tidal flooding upstream at Cley- ng is shown on figure 4.15.
Although outside the scope of this task in terms of epoch realignment of the tidal River Glaven channel to mitigate predicted a life expectancy of 200 years. As blockages of will be another significant change in course of the river a redirect the channel around the blockage.	e blockages caused by shingle ridge rollback has a of shingle become more frequent around this time, there

Frontage H – Cley and Salthouse Chainage: 49.5km 58.4km Diagram 1 Overtopping of the shingle ridge in front of Salthouse on 9 November 2007 Salthouse Overwashing Shingle ridge

Chainage: 49.5km 58.4km

Epoch 1: Years 0 to 20 (2025) E		Epoch 2: Y	ears 20 to 50 (2055)	Epoch 3: Years 50 to 100 (2105)		
Defences	Natural coast	Defences	Natural coast	Defences	Natural coast	
Most of earth embankments would remain. Cley-Salthouse flood management scheme effectively evacuates saline flood water from freshwater grazing marshes.	Continued rollback of shingle ridge (one metre a year), with associated overwashing and flooding of freshwater grazing marshes. Cley- Salthouse marshes and Blakeney Freshes remain freshwater dominated.	Complete failure of all defences.	Rate of movement of ridge would increase and it would re-profile. The ridge would be more susceptible to breaching and flooding. More tidal water over the freshwater marshes. Downstream extent of tidal River Glaven would take a natural meandering alignment. Previously freshwater marshes would see a transgression to natural saltmarsh habitats.	No defences remain.	Rate of movement of ridge likely to be similar to epoch 2. Sedimentation would occur over the Blakeney and Salthouse-Cley marshes. Saltmarsh development would continue.	

With present Scenario description

management (WPM) This scenario assumes that the current policy for the frontage continues. This will usually involve maintaining defences to provide a similar level of protection to that provided now and regularly inspecting and maintaining the defences.

Shoreline response

With present management, the rollback of the shingle ridge is likely to be the same as for the NAI scenario as it is not currently managed. This rollback, at a rate of around one metre a year for all epochs, would cause a gradual

Frontage H – C	ley and Salt	thouse		Chainage:	49.5km	58.4km
	squeeze of road (A149		es between th	e new dune line and the	higher grou	nd, marked by the main coast
	height, cau saline flood Blakeney F	sing increased inundat water into the tidal Riv reshes and Salthouse-	ion of the bac /er Glaven an ·Cley marshe:	kshore areas, the drainand subsequently out into	age system v the sea. As a ere would ne	nerally lowered ridge crest vould continue to evacuate a result, the nature of the eed to be a higher standard of a particularly in epoch 3.
	Epoch 1:	Years 0 to 20 (2025)	Epoch 2: Y	ears 20 to 50 (2055)	Epoch 3:	Years 50 to 100 (2105)
	Defences	Natural coast	Defences	Natural coast	Defences	Natural coast
	Defences would remain.	Continued rollback of shingle ridge (one metre a year). More frequent inundation of backshore areas, but drainage system will effectively evacuate saline flood water.	Defences would remain.	Continued rollback of shingle ridge. Need for increased protection along existing embankments and continual improvements to drainage system.	Defences would remain.	Continued rollback of shingle ridge with increased need for a better standard of protection along embankments and urgent need for improvements to drainage system. Previously freshwater marshes are likely to turn increasingly saline.

F4 Flood risk

F4.1 Introduction

This task describes the likelihood of flooding along the north Norfolk coast under the no active intervention (NAI) scenario for the three following epochs:

- present day to 2025 (short term)
- 2025 to 2055 (medium term)
- 2055 to 2105 (long term).

Annex G1 of the SMP guidance on procedures (volume 2, March 2006) provides support on classifying the risks according to the **likelihood** of the feature being lost or damaged and the scale of the **impact**. It presents the following risk matrix for each feature under each of the three epochs, see table F4.1.

Table F4.1: Risk matrix

	High	Medium high risk	High risk	Very high risk			
act	Medium	Low risk	Medium risk	High risk			
dm	Low	Negligible risk	Low risk	Medium risk			
		Low Medium High					
		Likelihood					

The **likelihood** of the feature being damaged or lost depends on flood risk and/or coastal erosion. SMP guidance on procedures (volume 2, March 2006) states that,

'For the purpose of the SMP it can be assumed that, should flood defences be breached, the whole flood plain can be defined to be "at risk". The flood risk areas should be based on the information produced by the Environment Agency e.g. the Flood Map'

(p.43, section 2.5, paragraph 4)

For the North Norfolk SMP, a different approach has been developed and applied that fits the policy level of detail and available data. The outcome consists of maps that show how the likelihood of flooding and erosion varies in space and time.

Section F4.2 describes the method for flooding. Section F4.3 presents the results of flooding for the different epochs. Conclusions are presented in section F4.4.

F4.2 Approach

F4.2.1 Overview

The approach assesses the likelihood of flooding within compartments taking into consideration the following:

- the maximum tidal flood extent
- the design standard
- the condition of the defences for each epoch

As the condition of the defence and flood extent changes during epochs, it has been necessary to choose particular years within the epochs to assess the likelihood of flooding. Present day was chosen as the baseline and then the end of each epoch, that is 2024, 2054 and 2105.

F4.2.2 Defining the maximum tidal flood extent

The first step to determining the likelihood of flooding is defining the maximum flood extent that could occur for each point in time.

For the present day, the tidal flood zone (supplied by the Environment Agency) has been used as this is the best available information that is widely accepted. However, the flood zones were adjusted to reflect only the tidal flood extent. Flood zones resulting from the influence of tides on river flooding were not considered. Effectively, they are outside the scope of the SMP.

For the future points in time, there is much more uncertainty involved and dependence on external factors. So, the maximum extent at the end of each epoch would be the 1:1000 year water levels (flood zone 2) plus the sea level rise (based on Defra FCDPAG3, 2006), as shown in table F4.2.

	2024	2054	2105
Location/coastline	EWL (mODN)	EWL (mODN)	EWL (mODN)
Hunstanton to Brancaster	6.33	6.58	7.25
Staithe			
Burnham Overy Staithe to	5.71	5.96	6.63
Wells			
Stiffkey to Kelling	5.45	5.70	6.37

Table F4.2: 1:1000 year water levels plus sea level rise

Extreme water levels change significantly over the frontage, so it is not possible to apply a single level for the entire coastal frontage. It is also not practical to apply a different water level for every kilometre. Coastal sections were chosen to allow a moderately staggered change in water levels.

F4.2.3 Defining the compartments

In the event of defences being overtopped or breached, it is highly unlikely that the entire flood zone would experience tidal flooding. So the flood plain has been divided into compartments using the tidal flood defences and higher ground.

F4.2.4 Defining failure of defences

Once the compartments were defined, the probability of defences failing was addressed. The chance of a breach depends on many factors such as the flood defence characteristics that determine performance (both in terms of geometry, fill material and subsoil), wave action, freeboard and uncertainty in tidal extreme water levels and bank survey. However, for this level of study, it was decided that the condition grade and standard of the defence would be used as the indication.

Originally, the defence standard was going to be used with the condition of the defence to determine the likelihood of flooding. However, it was discovered that all defences (except one) have a design standard of 1:10 years. So, the deciding factor on the likelihood of the flood zones flooding through the different epochs is their condition grade.

The Environment Agency supplied the present day condition of the defences (graded 1 to 5, with 5 being the worst and 1 being the best). Based on no active intervention and the "defence assessment" task, the condition of each defence section was determined in 2024, 2054 and 2105. The condition was then translated into likelihood of flooding:

- Condition 1 = very low likelihood of flooding
- Condition 2 = low likelihood of flooding
- Condition 3 = medium likelihood of flooding
- Condition 4 = high likelihood of flooding
- Condition 5 = very high likelihood of flooding.

The likelihood of flooding for each compartment is based on the worst condition of the whole group of defences protecting the compartment.

This was carried out using the present day situation and at the end of each epoch, that is 2024, 2054 and 2105. A "common sense" check was also carried out and any deviation from the approach has been recorded in the summary tables in section F4.5.

F4.3 Results

Figure F4.1 illustrates the properties at risk in the urban areas and how the flood extent increases throughout the epochs. The performance of defences is

particularly critical for the properties in Brancaster, Brancaster Staithe, Burnham Overy Staithe and Wells-next-the-Sea.

F4.3.1 Present day

The condition of the present day defences varies between grade 4 (including Brancaster and Titchwell sea banks) and grade 1 (including sand dunes of Holme Nature Reserve and Wells sea banks) (figure 2). Around 50 per cent of the critical defences are grade 3 condition. However, there is a continuous line of grade 2 defences at Burnham Norton (Norton marsh) and Holkham (west of Wells-next-the-Sea). Table F4.4 summarises the reasoning behind the illustration of the likelihood of flooding (shown in figure F4.1) and includes the critical defences.

Most of the areas likely to flood are marshes and farmland. However, certain established settlements and key features also fall within flood compartments. Sections of the A149 are liable to flooding within compartments NN21, NN20, NN18, NN19, NN13, N11 NN8 and NN07. Also, certain urban areas are within flood zones:

- Holme-next-the-Sea (NN02)
- Brancaster Staithe (NN04 NN06)
- Wells-next-the-Sea (NN13)
- Stiffkey (NN14)
- Morston (NN15)
- Blakeney (NN17 and NN18)
- Cley-next-the-Sea (NN18 and NN20).

F4.3.2 Likelihood of flooding in 2024 under NAI

Generally, the condition of the front-line defences varies between grade 5 (including Hunstanton to Brancaster, Burnham Overy Staithe and Cley-next-the-Sea) and grade 4 (including Deepdale marsh and Norton marsh), with the exception of a grade 2 defence at Wells harbour channel (see figure F4.1).

Figure F4.1 also illustrates that the maximum potential tidal flood extent is slightly larger than the present day tidal flood zone. The increase in the tidal flood zone is relatively small due to the rapid increase in land level. The likelihood of flooding in compartment NN012 might be affected by nearby compartments NN10 and NN11.

The calculation of the likelihood of flooding of compartments is recorded in table F4.5.

F4.3.3 Likelihood of flooding in 2054 under NAI

By 2054, nearly all the flood defences are in grade 5 condition under NAI, as illustrated in figure F4.1. Table F4.6 shows the reasoning for the likelihood of flooding.

The increase in the tidal flood zone is still relatively small. However, this small increase is likely to affect the populated areas of Holme-next-the-Sea, Thornham, Brancaster, Brancaster Staithe, Burnham Market, west Wells-next-the-Sea, Stiffkey and Blakeney.

F4.3.4 Likelihood of flooding in 2105 under NAI

The likelihood of flooding is the same as in 2054 (see figure F4.1) as the defences were already in condition 5. Table F4.7 summarises the calculation and defences considered.

The increase in the tidal flood zone is relatively larger in comparison to previous epochs. This increase will extend flood risk in the particularly vulnerable urban areas previously mentioned.

F4.3.5 Properties at flood risk

Table F4.3 indicates the predicted number of residential and commercial properties in the tidal flood zone likely to be affected, without taking into account the likelihood of flooding. As the tidal flood zone increases from present day to epoch 3, so does the number of properties at risk.

All properties			Residential properties			Commercial and other properties						
Flood cell	Present day	2025	2055	2105	Present day	2025	2055	2105	Present day	2025	2055	2105
Hunstanton to Holme	77	120	154	229	38	75	108	175	39	45	46	54
Thornham	2	3	5	8	2	3	5	8	0	0	0	0
Titchwell to Brancaster	20	29	34	43	3	6	8	24	17	23	26	19
Brancaster golf club	1	1	1	1	0	0	0	0	1	1	1	1
Brancaster and Brancaster Staithe	63	89	99	140	39	63	72	107	24	26	27	33
Burnham Deepdale and Burnham Norton	26	27	29	38	26	27	28	35	0	0	1	3
River Burn valley	38	40	44	83	35	37	41	73	3	3	3	10
Burnham Overy Staithe	22	22	22	36	22	22	22	33	0	0	0	3
Overy marshes	86	97	106	114	61	67	74	79	25	30	32	35
Wells quay	62	98	116	130	34	61	68	77	28	37	48	53
Wells east	151	192	209	235	123	161	174	199	28	31	35	36
Stiffkey to Morston	59	61	65	90	52	54	57	78	7	7	8	12
Blakeney quay	27	46	65	79	15	27	37	45	12	19	28	34
Blakeney Freshes	0	3	3	6	0	1	1	4	0	2	2	2
River Glaven valley	164	180	189	221	137	147	156	177	27	33	33	44
Cley and Salthouse marshes	20	35	35	55	16	31	31	48	4	4	4	7
Totals	818	1,043	1,176	1,508	603	782	882	1,162	215	261	294	346

Table F4.3: Predicted number of residential and commercial properties in the tidal flood zone

F4.4 Conclusions

The approach taken in this task maintains the practical and transparent values promoted by the SMP guidance. In epoch 1 (present day to 2025), there is a dramatic change in the likelihood of flooding with many of the defences deteriorating to grades 4 and 5. In epoch 2 (2026 to 2055) there are subtle changes in the likelihood of flooding with the risk within compartments varying from high to very high. In epoch 3 (2056 to 2105) the likelihood of flooding does not change and remains very high.

Despite the dramatic change in likelihood of flooding, the tidal flood zones have a relatively small increase from present day to 2105 due to the rapid increase in land level. Compartments NN01 and NN02 (Old Hunstanton to Thornham) show the largest increase in the tidal flood zone area.

These results show that the defences along the north Norfolk coast protect large areas of marshland and small areas with people, properties, infrastructure and cultural heritage along the edge of marshes, coastline and rivers. These findings will be taken into account in the policy appraisal.

F4.5 Detailed results

Table F4.4: Present day likelihood of flooding

	4	elinood of flood		
Compartment name	Worst condition of defences	Critical defence IDs	Likelihood of flooding	Comments
NN01	4	DEF_1_002, DEF_1_003	High	
NN02	4	DEF_1_045, DEF_1_047	High	
NN02a	4	DEF_1_059c	High	
NN03	3	DEF_1_065	Medium	
NN03a	3	DEF_1_062, DEF_1_063, DEF_1_064b, DEF_1_065	Medium	
NN04	4	DEF_1_067	High	There is a gap at the seaward defence line. However Lidar indicates raised ground at the gap
NN05	3	DEF_1_069	Medium	The critical defence limits a small area of the east corner of the compartment
NN06	4	DEF_1_071	High	
NN07	2	DEF_1_073, DEF_1_074, DEF_1_076	Low	
NN08	3	DEF_1_077	Medium	Decision on flooding likelihood depends on a small section of the compartment limited by DEF_1_077
NN09	3	DEF_1_077, DEF_1_078, DEF_1_079, DEF_1_081	Medium	
NN10	3	DEF_1_081, DEF_1_082, DEF_1_083	Medium	
NN11	3	DEF_1_083, DEF_1_091	Medium	DEF_1_091 protects the eastern corner of the compartment from the harbour
NN12	2	DEF_1_086, DEF_1_087, DEF_1_088,	Low	

Compartment name	Worst condition of defences	Critical defence IDs	Likelihood of flooding	Comments
		DEF_1_090		
NN13	2	DEF_1_092, DEF_1_093	Low	
NN14	2	DEF_1_094	Low	
NN15	3	DEF_1_096, DEF_1_097, DEF_1_098	Medium	
NN16	3	DEF_1_098	Medium	The eastern seaward corner is not limited by defences
NN17	3	DEF_1_099, DEF_1_100, DEF_1_101, DEF_1_102, DEF_1_105, DEF_1_113	Medium	
NN18	4	DEF_1_109	Medium	The defence limiting the compartment is a secondary defence. Likelihood of flooding can only be lower than the front-line compartments NN17, NN19 and NN20
NN19	4	DEF_1_109	Medium	Critical defence is a secondary defence so flooding likelihood does not depend on it
NN20	4	DEF_1_109	Medium	Critical defence is a secondary defence so flooding likelihood does not depend on it
NN21	3	DEF_1_116	Medium	

Table F4.5: 2024 likelihood of flooding

	Worst	Critical	Likelihood	
Compartment	condition of	defence IDs	of	Comments
name	defences	defence ib3	flooding	Comments
		DEF_1_002,	needing	
		DEF_1_003,		
NN01	5	DEF_1_004,	Very high	
		DEF_1_042		
		DEF_1_044,		
		DEF_1_045,		
		DEF_1_047,		
		DEF_1_048,		
		DEF_1_049,		
NN02	5	DEF_1_053,	Very high	
		DEF_1_055,	, ,	
		DEF_1_056,		
		DEF_1_057,		
		DEF_1_058,		
		DEF_1_059		
		DEF_1_059a,		
		DEF_1_059b,		
NN02a	5	DEF_1_059c,	Very high	
ININOZA	5	DEF_1_059d,	very nigh	
		DEF_1_059e,		
		DEF_1_059f		
NN03	5	DEF_1_065	Very high	
		DEF_1_062,		
NN03a	5	DEF_1_063,	Very high	
	Ū	DEF_1_064b,	, i or y mgm	
		DEF_1_065		
		DEF_1_066,		There is a gap at the
	F	DEF_1_067,	Varyhiah	defence frontages.
NN04	5	DEF_1_068,	Very high	However, Lidar indicates
		DEF_1_069		that the gap is raised
				ground The critical defence limits
		DEF_1_069,		a small area of the east
NN05	4	DEF_1_070	Very high	corner of the
				compartment
		DEF_1_070,		oompartment
NN06	5	DEF_1_071	Very high	
		DEF_1_073,		
NN07	4	DEF_1_074,	High	
		DEF_1_076		
				Decision on flooding
	F		Van, hiah	likelihood depends on a
NN08	5	DEF_1_077	Very high	small section of the
				compartment limited by a
				grade 4 defence

Compartment name	Worst condition of defences	Critical defence IDs	Likelihood of flooding	Comments
NN09	5	DEF_1_077, DEF_1_078, DEF_1_079, DEF_1_081	Very high	
NN10	5	DEF_1_081, DEF_1_081a, DEF_1_082, DEF_1_07183	Very high	
NN11	5	DEF_1_083, DEF_1_091	Very high	DEF_1_091 protects the eastern corner of the compartment from the harbour
NN12	4	DEF_1_086, DEF_1_087, DEF_1_088, DEF_1_090	High	
NN13	4	DEF_1_092, 	High	
NN14	4	DEF_1_094	High	
NN15	5	DEF_1_096, DEF_1_007, DEF_1_098	Very high	
NN16	5	DEF_1_098	Very high	The eastern seaward corner is not limited by defences
NN17	5	DEF_1_099, DEF_1_100, DEF_1_101, DEF_1_102, DEF_1_105, DEF_1_113	Very high	
NN18	5	DEF_1_109	Very high	The defence limiting the compartment is a secondary defence. Likelihood of flooding can only be lower than the front-line compartments NN17, NN19 and NN20
NN19	5	DEF_1_105, DEF_1_109, DEF_1_113, DEF_1_114, DEF_1_115, DEF_1_116	Very high	

Compartment name	Worst condition of defences	Critical defence IDs	Likelihood of flooding	Comments
NN20	5	DEF_1_108, DEF_1_109, DEF_1_113, DEF_1_114, DEF_1_115, DEF_1_116	Very high	
NN21	5	DEF_1_116	Very high	

Table F4.6: 2054 likelihood of flooding					
Compartment name	Worst condition of defences	Critical defence IDs	Likelihood of flooding	Comments	
NN01	5	DEF_1_002, DEF_1_003, DEF_1_004, DEF_1_042, DEF_1_043	Very high		
NN02	5	DEF_1_044, DEF_1_045, DEF_1_046, DEF_1_047, DEF_1_047, DEF_1_049, DEF_1_050, DEF_1_051, DEF_1_051, DEF_1_052, DEF_1_053, DEF_1_055, DEF_1_056, DEF_1_057, DEF_1_058, DEF_1_059	Very high		
NN02a	5	DEF_1_059a, DEF_1_059b, DEF_1_059c, DEF_1_059d, DEF_1_059e, DEF_1_059f	Very high		
NN03	5	DEF_1_060, DEF_1_061, DEF_1_065	Very high		
NN03a	5	DEF_1_062, DEF_1_063, DEF_1_064, DEF_1_064a, DEF_1_064b, DEF_1_065	Very high		

Table F4.6: 2054 likelihood of flooding

Compartment name	Worst condition of defences	Critical defence IDs	Likelihood of flooding	Comments
NN04	5	DEF_1_066, DEF_1_067, DEF_1_068, DEF_1_069	Very high	There is a gap at the defence frontages. However, lidar indicates that the gap is raised ground
NN05	5	DEF_1_069, DEF_1_070	Very high	
NN06	5	DEF_1_070, DEF_1_071	Very high	
NN07	5	DEF_1_073, DEF_1_074, DEF_1_076	Very high	
NN08	5	DEF_1_074, DEF_1_075, DEF_1_076, DEF_1_077	Very high	
NN09	5	DEF_1_077, DEF_1_078, DEF_1_079, DEF_1_080, DEF_1_081	Very high	
NN10	5	DEF_1_080, DEF_1_081, DEF_1_081a, DEF_1_082, DEF_1_083	Very high	
NN11	5	DEF_1_083, DEF_1_086, DEF_1_089, DEF_1_090, DEF_1_091	Very high	
NN12	5	DEF_1_086, DEF_1_087, DEF_1_088, DEF_1_089, DEF_1_090	Very high	

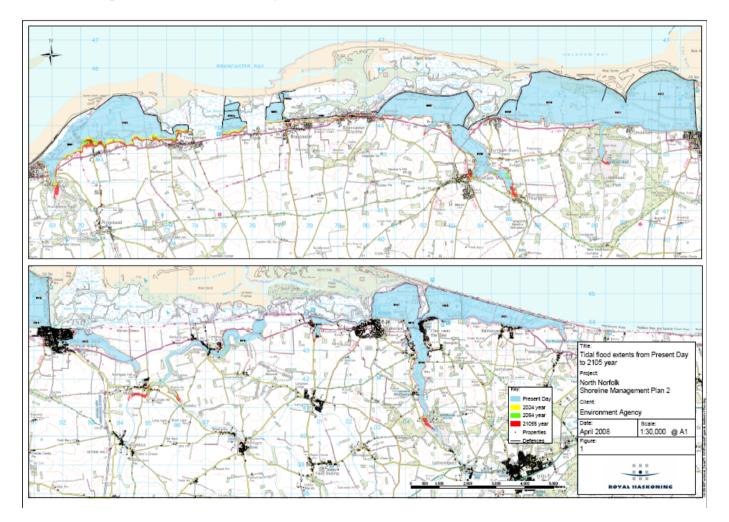

Compartment name	Worst condition of defences	Critical defence IDs	Likelihood of flooding	Comments
NN13	5	DEF_1_092, DEF_1_093	Very high	
NN14	5	DEF_1_094	Very high	
NN15	5	DEF_1_096, DEF_1_097, DEF_1_098	Very high	
NN16	5	DEF_1_098	Very high	The eastern seaward corner is not limited by defences
NN17	5	DEF_1_099, DEF_1_100, DEF_1_101, DEF_1_102, DEF_1_103, DEF_1_104, DEF_1_105, DEF_1_106, DEF_1_106, DEF_1_108, DEF_1_113	Very high	
NN18	5	DEF_1_107, DEF_1_108, DEF_1_109	Very high	
NN19	5	DEF_1_105, DEF_1_106, DEF_1_107, DEF_1_108, DEF_1_109, DEF_1_110, DEF_1_111, DEF_1_112, DEF_1_113, DEF_1_114	Very high	
NN20	5	DEF_1_108, DEF_1_109, DEF_1_110, DEF_1_111, DEF_1_112, DEF_1_113, DEF_1_114, DEF_1_115, DEF_1_116	Very high	
NN21	5	DEF_1_116	Very high	

	Table F4.7: 2105 likelihood of flooding						
Compartment name	Worst condition of defences	Critical defence IDs	Likelihood of flooding	Comments			
NN01	5	DEF_1_002, DEF_1_003, DEF_1_004, DEF_1_042, DEF_1_043	Very high				
NN02	5	DEF_1_044, DEF_1_045, DEF_1_046, DEF_1_047, DEF_1_048, DEF_1_049, DEF_1_050, DEF_1_051, DEF_1_052, DEF_1_052, DEF_1_054, DEF_1_055, DEF_1_056, DEF_1_058, DEF_1_059	Very high				
NN02a	5	DEF_1_059a, DEF_1_059b, DEF_1_059c, DEF_1_059d, DEF_1_059e, DEF_1_059f	Very high				
NN03	5	DEF_1_060, DEF_1_061, DEF_1_065	Very high				
NN03a	5	DEF_1_062, DEF_1_063, DEF_1_064, DEF_1_064a, DEF_1_064b, DEF_1_065	Very high				
NN04	5	DEF_1_066, DEF_1_067, DEF_1_068, DEF_1_069	Very high	There is a gap at the defence frontages. However, lidar indicates that the gap is raised ground			
NN05	5	DEF_1_069, DEF_1_070	Very high				
NN06	5	DEF_1_070, DEF_1_071	Very high				

Table F4.7: 2105 likelihood of flooding

Compartment name	Worst condition of defences	Critical defence IDs	Likelihood of flooding	Comments
NN07	5	DEF_1_073, DEF_1_074, DEF_1_076	Very high	
NN08	5	DEF_1_074, DEF_1_075, DEF_1_076, DEF_1_077	Very high	
NN09	5	DEF_1_077, DEF_1_078, DEF_1_079, DEF_1_080, DEF_1_081	Very high	
NN10	5	DEF_1_080, DEF_1_081, DEF_1_081a, DEF_1_082, DEF_1_083	Very high	
NN11	5	DEF_1_083, DEF_1_086, DEF_1_089, DEF_1_090, DEF_1_091	Very high	
NN12	5	DEF_1_086, DEF_1_087, DEF_1_088, DEF_1_089, DEF_1_090	Very high	
NN13	5	DEF_1_092, DEF_1_093	Very high	
NN14	5	DEF_1_094	Very high	
NN15	5	DEF_1_096, DEF_1_097, DEF_1_098	Very high	
NN16	5	DEF_1_098	Very high	The eastern seaward corner is not limited by defences
NN17	5	DEF_1_099, DEF_1_100, DEF_1_101, DEF_1_102, DEF_1_103, DEF_1_104, DEF_1_105, DEF_1_106, DEF_1_107, DEF_1_108,	Very high	

Compartment name	Worst condition of defences	Critical defence IDs	Likelihood of flooding	Comments
		DEF_1_113		
NN18	5	DEF_1_107, DEF_1_108, DEF_1_109	Very high	
NN19	5	DEF_1_105, DEF_1_106, DEF_1_107, DEF_1_108, DEF_1_109, DEF_1_110, DEF_1_111, DEF_1_112, DEF_1_113, DEF_1_114	Very high	
NN20	5	DEF_1_108, DEF_1_109, DEF_1_110, DEF_1_111, DEF_1_112, DEF_1_113, DEF_1_114, DEF_1_115, DEF_1_116	Very high	
NN21	5	 DEF_1_116	Very high	

Figure F4.1: Predicted change of flood extent in epochs 1, 2 and 3

F5 Erosion risk

F5.1 Introduction

The aim of this task is to identify the erosion risk along the north Norfolk coastline. This section will summarise each frontage in terms of the assets at risk at the end of each epoch.

Within this task there will be two activities. These are mainly based on the outcomes of the assessment of baseline scenarios previously formulated for the SMP (see section F3 of this appendix):

- Derivation of assets at risk for the 'no active intervention' (NAI) scenario.
- Demonstration of the above through mapping the assets at risk.

The NAI scenario will discuss the assets at risk from erosion during the three epochs: epoch 1 (present day to 2025), epoch 2 (2026 to 2055) and epoch 3 (2056 to 2105).

The 'with present management' scenario is not included in the analysis of assets at risk from erosion as it is assumed that present management will ensure that the assets are suitably protected from erosion risk up to the end of epoch 3 (that is, 2105).

As with the derivation of areas and assets at flood risk (section F4 of this appendix), the North Norfolk SMP has developed an alternative approach from the SMP guidance to ascertain the assets at risk from both flooding and erosion. The outcome consists of maps showing how the likelihood of flooding and erosion varies in space and in time.

F5.2 Approach

F5.2.1 Overview

Using the outcomes of the baseline scenarios report (section F3 of this appendix), which provided the predicted future shoreline position at the end of the three epochs, the assets at risk from erosion at the end of each epoch could be identified.

This section will illustrate this by mapping the assets at risk and in which epoch they are vulnerable. Results are presented in a series of maps for each frontage.

For those frontages where there seem to be no assets at risk from erosion, the predicted shoreline evolution can be seen in the baseline scenarios analysis, see section F3 of this appendix.

It is important to stress here that the predicted future shoreline evolution put forward in the baseline scenarios assessment includes a degree of uncertainty that increases into the later epochs. As this assessment of erosion risk is based on these best estimates, it will also carry a degree of uncertainty, which will also increase into the later epochs.

F5.3 Super-frontage 1 (frontages A and B)

F5.3.1 Frontage A

This frontage comprises mainly of the Old Hunstanton dunes frontage. Erosion risk along this frontage comes from rollback of the natural dune system. The assets at risk from erosion are illustrated in figure F5.1.

Epoch 1

The assumed erosion rates indicate that, during epoch 1 (present day to 2025), the beach huts behind the dunes at Old Hunstanton are at risk from coastal erosion under no active intervention.

Epoch 2

No additional assets at risk from erosion.

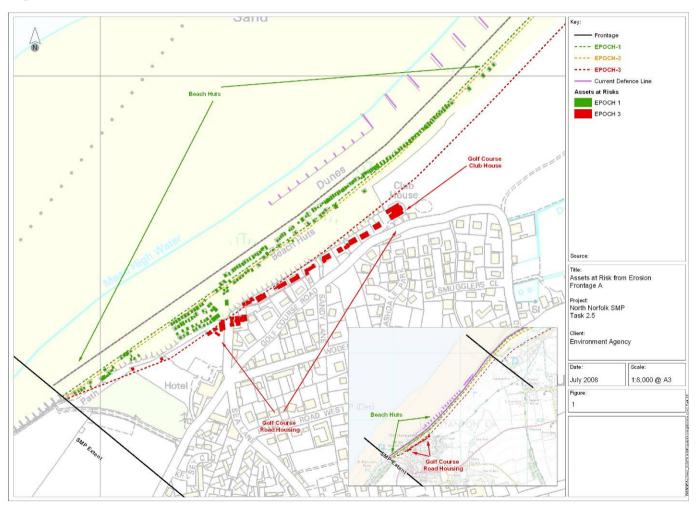
Epoch 3

Under no active intervention, the houses in front of the Golf Course Road would be at risk from erosion between 2055 and 2105. Also, the golf links clubhouse would be at risk from erosion during this epoch with subsequent effects on the use of the golf course itself.

F5.3.2 Frontage B

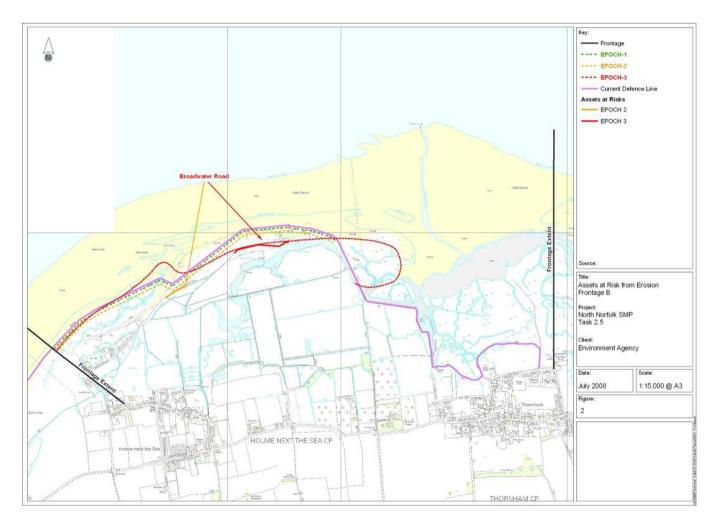
This frontage runs from Holme-next-the-Sea to Thornham. As with frontage A, erosion risk along this frontage comes from rollback of the natural dune line. Highlighted assets at risk are shown in figure F5.2.

Epoch 1


No assets at risk from erosion.

Epoch 2

There is a section of Broadwater Road that would be at risk from erosion during epoch 2. This could inhibit access to the Holme Nature Reserve and the beach.


Epoch 3

Erosion risk during the final epoch could cut off a section of Broadwater Road and stretches of the coastal footpath. This could restrict access to The Firs, part of the Holme Nature Reserve, where there is a popular visitor centre and car park managed by the Norfolk Wildlife Trust. This is not at risk from erosion.

Figure F5.1 Frontage A assets at risk from erosion

F5.4 Super-frontage 2 (frontages C to F)

F5.4.1 Frontage C

Frontage C covers the length of Brancaster bay. As with frontages A and B, erosion risk along this frontage comes from rollback of the natural dune line. The location of the frontage and the assets at risk from erosion are shown in figure F5.3.

Epoch 1

No assets at risk from erosion.

Epoch 2

Under no active intervention, the Royal West Norfolk golf club is at risk from erosion within the next 50 years. This is based on present erosion rates and residual life of the defences currently estimated between 20 and 35 years.

Epoch 3

Epoch 3 could threaten the Titchwell RSPB reserve area of fresh water. This could reduce the tourist value of the area as some visitors travel a long way to visit this reserve.

F5.4.2 Frontage D

This frontage covers the area known as Scolt Head Island. The baseline scenarios assessment has detailed maps of the frontage boundaries. This frontage has a high level of flood risk following failure of the existing sea banks and inundation of the former reclaimed areas. However, there are no erosion-specific processes occurring along this frontage so there are no assets at risk from erosion.

F5.4.3 Frontage E

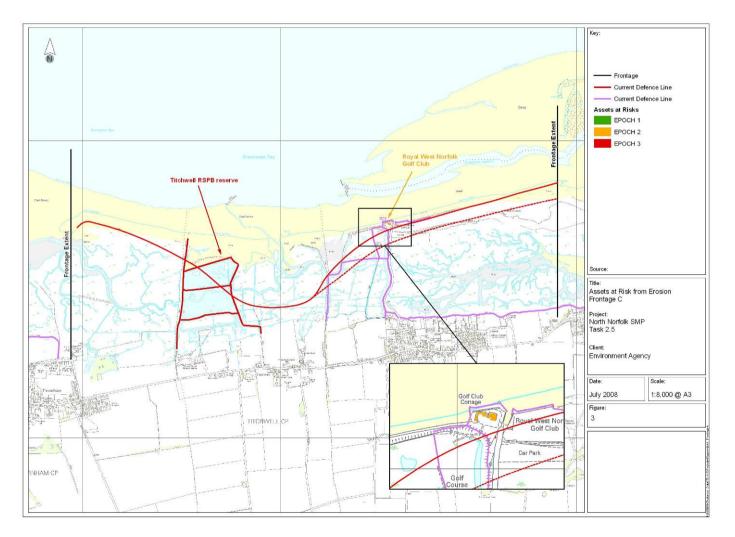
This frontage covers Holkham bay. As with frontages A to C, the risk from erosion is brought about by rollback of the natural dune line.

Epoch 1

Under no active intervention, Wells-next-the-Sea could lose its coastguard look-out, lifeboat house and beach huts from coastal erosion during this epoch. These assets are shown in figure F5.4 with a focus on the area where the assets are located.

Epoch 2

No additional assets at risk from erosion.


Epoch 3

This epoch holds the additional risk of losing Holkham Gap car park as well as the boating lake and Wells Beach Road car park. This would consequently affect the amenities associated with the car park area, such as the café and toilets.

F5.4.4 Frontage F

This frontage comprises the Warham and Stiffkey marshes coastline. Although this frontage will be characterised by loss of saltmarsh due to erosion at the seaward edge of the saltmarsh, there are no assets at risk from this erosion in any epochs. The baseline scenarios assessment provides detailed maps of the predicted shoreline evolution over the three epochs.

Figure F5.4 Frontage E assets at risk from erosion

F5.5 Super-frontage 3 (frontages G and H)

F5.5.1 Frontage G

Frontage G mainly comprises Blakeney Point spit and the area behind it. This frontage is at risk from flooding following defence failure and inundation of the former reclaimed areas. However, there are no assets at risk from coastal erosion.

F5.5.2 Frontage H

The final frontage begins at Cley-next-the-Sea and completes the North Norfolk SMP frontage at Kelling Hard, including the village of Salthouse. Erosion risk along this frontage will be brought about by rollback and collapse of the shingle ridge as detailed in the baseline scenarios assessment. Figure F5.5 below shows the locations of the assets and the epoch that they are likely to fail.

Epoch 1

Under no active intervention, Beach Road car park at Salthouse is at risk from loss due to coastal erosion within the next 20 years at present rates of erosion.

Epoch 2

The Cley-next-the-Sea coastguard look-out and the nature reserve hides at Cley Eye would be lost from coastal erosion under no active intervention.

Epoch 3

No additional assets at risk from erosion.

F5.6 Conclusion

As indicated above, it is clear that there are a number of assets at risk from coastal erosion along the north Norfolk coastline from Old Hunstanton to Kelling Hard. Figures F5.1 to F5.5 highlight those assets believed to be at risk due to coastal erosion and the epoch that this is likely to occur. These findings will be taken into account in policy appraisal in stage 3 of the SMP.

Figure F5.5 Frontage H assets at risk from erosion